Featured Research

from universities, journals, and other organizations

New multitarget molecule designed with high potential in future treatments for Alzheimer's disease

Date:
June 4, 2012
Source:
Universitat Autňnoma de Barcelona
Summary:
Researchers have developed a multitarget molecule, ASS234, which according to the results of in vitro studies conducted, inhibits the aggregation of the ß-amyloid protein, involved in Alzheimer's disease. At the same time, ASS234 stimulates the cholinergic and monoaminergic transmission, key factors involved in the cognitive function. In addition, ASS234 is able to cross the blood–brain barrier with an elevated multipotent profile designed on basis of donepezil (Aricept®), one of the few effective drugs in palliative and symptomatic treatments of the disease.

Researchers at Universitat Autňnoma de Barcelona (UAB), the Spanish National Research Council (CSIC) and the University of Barcelona (UB) have developed a multitarget molecule, ASS234, which according to the results of in vitro studies conducted, inhibits the aggregation of the ß-amyloid protein, involved in Alzheimer's disease. At the same time, ASS234 stimulates the cholinergic and monoaminergic transmission, key factors involved in the cognitive function. In addition, ASS234 is able to cross the blood-brain barrier with an elevated multipotent profile designed on basis of donepezil (Aricept®), one of the few effective drugs in palliative and symptomatic treatments of the disease.

Related Articles


  • It acts simultaneously on several targets in the brain
  • In vitro studies reveal a reduction in the ß-amyloid peptide aggregation, involved in the disease, and a boost in cognitive function
  • It could lead the development of more efficient drugs than those currently used

Researchers at Universitat Autňnoma de Barcelona (UAB), the Spanish National Research Council (CSIC) and the University of Barcelona (UB) have developed a multitarget molecule, ASS234, which according to the results of in vitro studies conducted, inhibits the aggregation of the ß-amyloid protein, involved in Alzheimer's disease. At the same time, ASS234 stimulates the cholinergic and monoaminergic transmission, key factors involved in the cognitive function. In addition, ASS234 is able to cross the blood-brain barrier with an elevated multipotent profile designed on basis of donepezil (Aricept®), one of the few effective drugs in palliative and symptomatic treatments of the disease.

In the development of this new molecule, researchers used the strategy of "multipotent drugs," capable of acting simultaneously on different targets in the brain involved in this neurodegenerative disease, given that the paradigm used in the design of drugs based on the strategy of "one drug, one target" has shown to be unsuitable in offering satisfactory results.

ASS234 was developed as a hybrid of two known molecules. One of them, donepezil, is currently used to treat Alzheimer's disease, and the other, PF9601N compound, is an inhibitor of the monoamino oxidase B (MAO B) enzyme, patented and developed by researchers at UAB and CSIC, with proven neuroprotective effects in different experimental models of Parkinson's disease.

The research was directed by Mercedes Unzeta, researcher of the Department of Biochemistry and Molecular Biology and of the Institute of Neurosciences (INc) at UAB, José Luis Marco Contelles, CSIC researcher at the Institute of General Organic Chemistry (IQOG), and F. Javier Luque, researcher of the Department of Physico-Chemistry at the Faculty of Pharmacy and the Institute of Biomedicine of the UB (IBUB). All three researchers have worked for years on the design, synthesis and biological evaluation of new multipotent molecules capable of stimulating neural transmissions and at the same time having neuroprotective effects. ASS234 acts on both of these processes. The biochemical activity and pharmacological potential of the molecule was exhaustively characterised by Irene Bolea (UAB) and synthesised by Abdelouahid Samadi (CSIC). Previous studies on the interactions of ASS234 with its possible targets were carried out by Jordi Juárez-Jiménez (UB). The ASS234 molecule has been patented by all three institutions.

This molecule could be much more efficient than other compounds used to stimulate neural transmission and simultaneously act on different brain targets. To date, in vitro investigations conducted at UAB have demonstrated that ASS234, in addition to being able to inhibit monoamino oxidases A and B, also act on the enzymes acetylcholinesterase and butyrylcholinesterase, thus helping to boost levels of acetylcholine, a neurotransmitter deficient in patients with Alzheimer's. The latest results obtained indicate that ASS234 also reduces aggregation of the ß-amyloid protein which gives way to the appearance of senile plaques characteristic of the disease. Other recent studies conducted by researchers of the CSIC Cajal Institute and the University of Lodz, Poland, have demonstrated that ASS234 is able to cross the blood-brain barrier and improves memory in mice.

All studies conducted to date make clear that ASS234 is a promising multitarget molecule due to its potential therapeutic effects on patients with Alzheimer's disease. As affirmed by Dr Unzeta and Dr Marco Contelles, ASS234 "a priori appears as a derivative of donepezil, which contains not only its virtues but possesses also a potential multipotent profile drug, which could make it a more efficient drug for the treatment of this disease."

The research on ASS234 and results obtained was recently published in the Journal of Medicinal Chemistry.


Story Source:

The above story is based on materials provided by Universitat Autňnoma de Barcelona. Note: Materials may be edited for content and length.


Cite This Page:

Universitat Autňnoma de Barcelona. "New multitarget molecule designed with high potential in future treatments for Alzheimer's disease." ScienceDaily. ScienceDaily, 4 June 2012. <www.sciencedaily.com/releases/2012/06/120604093016.htm>.
Universitat Autňnoma de Barcelona. (2012, June 4). New multitarget molecule designed with high potential in future treatments for Alzheimer's disease. ScienceDaily. Retrieved December 19, 2014 from www.sciencedaily.com/releases/2012/06/120604093016.htm
Universitat Autňnoma de Barcelona. "New multitarget molecule designed with high potential in future treatments for Alzheimer's disease." ScienceDaily. www.sciencedaily.com/releases/2012/06/120604093016.htm (accessed December 19, 2014).

Share This


More From ScienceDaily



More Mind & Brain News

Friday, December 19, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Prenatal Exposure To Pollution Might Increase Autism Risk

Prenatal Exposure To Pollution Might Increase Autism Risk

Newsy (Dec. 18, 2014) — Harvard researchers found children whose mothers were exposed to high pollution levels in the third trimester were twice as likely to develop autism. Video provided by Newsy
Powered by NewsLook.com
Yoga Could Be As Beneficial For The Heart As Walking, Biking

Yoga Could Be As Beneficial For The Heart As Walking, Biking

Newsy (Dec. 17, 2014) — Yoga can help your weight, blood pressure, cholesterol and heart just as much as biking and walking does, a new study suggests. Video provided by Newsy
Powered by NewsLook.com
1st Responders Trained for Autism Sensitivity

1st Responders Trained for Autism Sensitivity

AP (Dec. 16, 2014) — More departments are ordering their first responders to sit in on training sessions that focus on how to more effectively interact with those with autism spectrum disorder (Dec. 16) Video provided by AP
Powered by NewsLook.com
Guys Are Idiots, According To Sarcastic Study

Guys Are Idiots, According To Sarcastic Study

Newsy (Dec. 12, 2014) — A study out of Britain suggest men are more idiotic than women based on the rate of accidental deaths and other factors. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins