Featured Research

from universities, journals, and other organizations

How to bend it like Beckham: Physics students calculate perfect soccer ball kicking formula

Date:
June 29, 2012
Source:
University of Leicester
Summary:
Now that David Beckham won't be appearing at the London 2012 Olympics, other members of Team GB wanting to brush up on their free-kicks can rest easy. A physics students has figured out the optimum way of kicking a soccer ball in order to make it bend into the goal. The ex-England captain's curling free-kicks became legendary, and even inspired the title of the 2002 film Bend It Like Beckham.

Researchers found that the distance a ball bends (D) as a result of this force is related to the ball's radius (R), the density of air (), the ball's angular velocity (), it's velocity through the air (v), it's mass (m) and the distance travelled by the ball in the direction it was kicked (x).
Credit: Image courtesy of University of Leicester

Now that David Beckham won't be appearing at the London 2012 Olympics, other members of Team GB wanting to brush up on their free-kicks can rest easy.

University of Leicester physics students have published a paper which sets out the optimum way of kicking a football (soccer ball) in order to make it bend into the goal.

The ex-England captain's curling free-kicks became legendary, and even inspired the title of the 2002 film Bend It Like Beckham.

Now, four master's students at the University of Leicester's Department of Physics and Astronomy believe they have discovered a formula to explain how the football curves when a player puts spin on it.

Jasmine Sandhu, Amy Edgington, Matthew Grant and Naomi Rowe-Gurney found a relationship between the amount a football bends in the air, the speed it is travelling and the angular velocity -- or "spin" -- applied to the ball.

When a football spins in the air, it is subjected to a force called the Magnus force -- which causes it to curl sideways from the direction it was originally kicked.

The group found that the distance a ball bends (D) as a result of this force is related to the ball's radius (R), the density of air (ρ), the ball's angular velocity (ω), it's velocity through the air (v), it's mass (m) and the distance travelled by the ball in the direction it was kicked (x).

For instance, if a player standing 15 metres away from the byline kicked an average football so that it was travelling at a velocity of 35 metres per second and had an angular velocity of 10 revolutions per second, the ball would bend around 5 metres towards the goal.

As a result, the player would probably need to bring a tape measure -- as well as a measure of their own abilities -- if they wanted to put the theory into practice during a game!

Jasmine Sandhu, 22, who studies Physics with Space Science and Technology, said: "Whilst researching new ideas for a paper I read about how physics influences various aspects of football, from the clothing they wear to the effects of playing at high altitude.

"The article discussed how a new design of ball, used in the 2010 World Cup, has three dimensional moulding of the panels in order to produce a more rounded ball, thus affecting the spin that can be imparted.

"This prompted us to examine how footballers use spin on the ball, and the factors which influence how much the path of the ball would bend.

"These findings made me more aware of how I can use spin to bend the ball in a game of football. In addition, this research is also relevant to other sports, such as tennis, which shows that physics definitely gives you the edge!"

The paper was published in this year's University of Leicester Journal of Special Physics Topics, which features original short papers written by students in the final year of their four-year Master of Physics degree.

Link to article. https://physics.le.ac.uk/journals/index.php/pst/article/view/458/256


Story Source:

The above story is based on materials provided by University of Leicester. Note: Materials may be edited for content and length.


Cite This Page:

University of Leicester. "How to bend it like Beckham: Physics students calculate perfect soccer ball kicking formula." ScienceDaily. ScienceDaily, 29 June 2012. <www.sciencedaily.com/releases/2012/06/120629120328.htm>.
University of Leicester. (2012, June 29). How to bend it like Beckham: Physics students calculate perfect soccer ball kicking formula. ScienceDaily. Retrieved April 20, 2014 from www.sciencedaily.com/releases/2012/06/120629120328.htm
University of Leicester. "How to bend it like Beckham: Physics students calculate perfect soccer ball kicking formula." ScienceDaily. www.sciencedaily.com/releases/2012/06/120629120328.htm (accessed April 20, 2014).

Share This



More Matter & Energy News

Sunday, April 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Small Reactors Could Be Future of Nuclear Energy

Small Reactors Could Be Future of Nuclear Energy

AP (Apr. 17, 2014) After the Fukushima nuclear disaster, the industry fell under intense scrutiny. Now, small underground nuclear power plants are being considered as the possible future of the nuclear energy. (April 17) Video provided by AP
Powered by NewsLook.com
Horseless Carriage Introduced at NY Auto Show

Horseless Carriage Introduced at NY Auto Show

AP (Apr. 17, 2014) An electric car that proponents hope will replace horse-drawn carriages in New York City has also been revealed at the auto show. (Apr. 17) Video provided by AP
Powered by NewsLook.com
Honda's New ASIMO Robot, More Human-Like Than Ever

Honda's New ASIMO Robot, More Human-Like Than Ever

AFP (Apr. 17, 2014) It walks and runs, even up and down stairs. It can open a bottle and serve a drink, and politely tries to shake hands with a stranger. Meet the latest ASIMO, Honda's humanoid robot. Duration: 00:54 Video provided by AFP
Powered by NewsLook.com
German Researchers Crack Samsung's Fingerprint Scanner

German Researchers Crack Samsung's Fingerprint Scanner

Newsy (Apr. 16, 2014) German researchers have used a fake fingerprint made from glue to bypass the fingerprint security system on Samsung's new Galaxy S5 smartphone. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins