Featured Research

from universities, journals, and other organizations

World's fastest camera used to detect rogue cancer cells

Date:
July 6, 2012
Source:
University of California - Los Angeles
Summary:
Researchers report integrating the world's fastest camera with advanced microfluidics and real-time image processing to classify cells in blood samples. The new blood screening technology boasts a throughput of 100,000 cells per second which is approximately 100 times higher than conventional imaging-based blood analyzers. The technology performs real-time detection of extremely rare cells in a large sample of normal cells with high sensitivity and statistical accuracy in a short period of time.

Optical microscope with world's fastest camera.
Credit: Image courtesy of University of California - Los Angeles

The ability to distinguish and isolate rare cells from among a large population of assorted cells has become increasingly important for the early detection of disease and for monitoring disease treatments.

Circulating cancer tumor cells are a perfect example. Typically, there are only a handful of them among a billion healthy cells, yet they are precursors to metastasis, the spread of cancer that causes about 90 percent of cancer mortalities. Such "rogue" cells are not limited to cancer -- they also include stem cells used for regenerative medicine and other cell types.

Unfortunately, detecting such cells is difficult. Achieving good statistical accuracy requires an automated, high-throughput instrument that can examine millions of cells in a reasonably short time. Microscopes equipped with digital cameras are currently the gold standard for analyzing cells, but they are too slow to be useful for this application.

Now, a new optical microscope developed by UCLA engineers could make the tough task a whole lot easier.

"To catch these elusive cells, the camera must be able to capture and digitally process millions of images continuously at a very high frame rate," said Bahram Jalali, who holds the Northrop Grumman Endowed Opto-Electronic Chair in Electrical Engineering at the UCLA Henry Samueli School of Engineering and Applied Science. "Conventional CCD and CMOS cameras are not fast and sensitive enough. It takes time to read the data from the array of pixels, and they become less sensitive to light at high speed."

The current flow-cytometry method has high throughput, but since it relies on single-point light scattering, as opposed to taking a picture, it is not sensitive enough to detect very rare cell types, such as those present in early-stage or pre-metastasis cancer patients.

To overcome these limitations, an interdisciplinary team of researchers led by Jalali and Dino Di Carlo, a UCLA associate professor of bioengineering, with expertise in optics and high-speed electronics, microfluidics, and biotechnology, has developed a high-throughput flow-through optical microscope with the ability to detect rare cells with sensitivity of one part per million in real time.

This technology builds on the photonic time-stretch camera technology created by Jalali's team in 2009 to produce the world's fastest continuous-running camera.

In the latest issue of the journal Proceedings of the National Academy of Sciences, Jalali, Di Carlo and their colleagues describe how they integrated this camera with advanced microfluidics and real-time image processing in order to classify cells in blood samples. The new blood-screening technology boasts a throughput of 100,000 cells per second, approximately 100 times higher than conventional imaging-based blood analyzers.

"This achievement required the integration of several cutting-edge technologies through collaborations between the departments of bioengineering and electrical engineering and the California NanoSystems Institute and adds to the significant technology infrastructure being developed at UCLA for cell-based diagnostics," Di Carlo said.

Both Jalali and Di Carlo are members of the California NanoSystems Institute at UCLA.

Their research demonstrates real-time identification of rare breast cancer cells in blood with a record low false-positive rate of one cell in a million. Preliminary results indicate that this new technology has the potential to quickly enable the detection of rare circulating tumor cells from a large volume of blood, opening the way for statistically accurate early detection of cancer and for monitoring the efficiency of drug and radiation therapy.

"This technology can significantly reduce errors and costs in medical diagnosis," said lead author Keisuke Goda, a UCLA program manager in electrical engineering and bioengineering.

The results were obtained by mixing cancer cells grown in a laboratory with blood in various proportions to emulate real-life patient blood.

"To further validate the clinical utility of the technology, we are currently performing clinical tests in collaboration with clinicians," said Goda, also a member of the California NanoSystems Institute. "The technology is also potentially useful for urine analysis, water quality monitoring and related applications."

The study was funded by the U.S. Congressionally Directed Medical Research Programs (CDMRP) and by NantWorks LLC and the Burroughs Wellcome Fund.


Story Source:

The above story is based on materials provided by University of California - Los Angeles. The original article was written by Wileen Wong Kromhout. Note: Materials may be edited for content and length.


Journal Reference:

  1. K. Goda, A. Ayazi, D. R. Gossett, J. Sadasivam, C. K. Lonappan, E. Sollier, A. M. Fard, S. C. Hur, J. Adam, C. Murray, C. Wang, N. Brackbill, D. Di Carlo, B. Jalali. High-throughput single-microparticle imaging flow analyzer. Proceedings of the National Academy of Sciences, 2012; DOI: 10.1073/pnas.1204718109

Cite This Page:

University of California - Los Angeles. "World's fastest camera used to detect rogue cancer cells." ScienceDaily. ScienceDaily, 6 July 2012. <www.sciencedaily.com/releases/2012/07/120706164420.htm>.
University of California - Los Angeles. (2012, July 6). World's fastest camera used to detect rogue cancer cells. ScienceDaily. Retrieved April 24, 2014 from www.sciencedaily.com/releases/2012/07/120706164420.htm
University of California - Los Angeles. "World's fastest camera used to detect rogue cancer cells." ScienceDaily. www.sciencedaily.com/releases/2012/07/120706164420.htm (accessed April 24, 2014).

Share This



More Health & Medicine News

Thursday, April 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Big Pharma Braces for M&A Wave

Big Pharma Braces for M&A Wave

Reuters - Business Video Online (Apr. 22, 2014) Big pharma on the move as Novartis boss, Joe Jimenez, tells Reuters about plans to transform his company via an asset exchange with GSK, and Astra Zeneca shares surge on speculation that Pfizer is looking for a takeover. Joanna Partridge reports. Video provided by Reuters
Powered by NewsLook.com
Study Says Most Crime Not Linked To Mental Illness

Study Says Most Crime Not Linked To Mental Illness

Newsy (Apr. 22, 2014) A new study finds most crimes committed by people with mental illness are not caused by symptoms of their illness or disorder. Video provided by Newsy
Powered by NewsLook.com
Hagel Gets Preview of New High-Tech Projects

Hagel Gets Preview of New High-Tech Projects

AP (Apr. 22, 2014) Defense Secretary Chuck Hagel is given hands-on demonstrations Tuesday of some of the newest research from DARPA _ the military's Defense Advanced Research Projects Agency program. (April 22) Video provided by AP
Powered by NewsLook.com
How Smaller Plates And Cutlery Could Make You Feel Fuller

How Smaller Plates And Cutlery Could Make You Feel Fuller

Newsy (Apr. 22, 2014) NBC's "Today" conducted an experiment to see if changing the size of plates and utensils affects the amount individuals eat. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins