Featured Research

from universities, journals, and other organizations

Development of 'Slater insulator' that rapidly changes from conductor to insulator at room temperature

Date:
July 11, 2012
Source:
National Institute for Materials Science
Summary:
Scientists have succeeded in developing a Slater insulator which functions at room temperature.

(Left) Photograph of a crystal of Perovskite type osmium oxide and (right) schematic diagram of its crystal structure. White circles: sodium ions, red circles: oxygen ions. Osmium ions exist in the central part of the octahedron.
Credit: Copyright NIMS

Dr. Kazunari Yamaura, a Principal Researcher of the Strongly Correlated Materials Group, Superconducting Properties Unit, National Institute for Materials Science (NIMS; President: Sukekatsu Ushioda), in joint work with a research group at the Oak Ridge National Laboratory in the United States, succeeded in development of a Slater insulator which functions at room temperature.

Related Articles


Slater insulators have been studied for more than 50 years as insulators with special properties. Although Slater insulators display the properties of metals at a sufficiently high temperature, they become insulators when cooled to a certain temperature (transition temperature) peculiar to the substance concerned. Because this transition temperature was conventionally far lower than room temperature, study had been limited to scientific research, and virtually no research had been done aiming at development to applications.

This research clarified the fact that a new material (Perovskite type osmium oxide), which was synthesized for the first time by NIMS in 2009, is the Slater insulator with the highest transition temperature to date. This result was verified through joint experimental research with a research group at the Oak Ridge National Laboratory in the United States using the neutron diffraction method.

Because this new material displays the characteristics of a Slater insulator at room temperature without requiring cooling, it is not only scientifically interesting, but also has the potential for development to application as a new material. If further progress can be achieved in research with this new material as a starting point, there is a possibility that new materials and devices with unprecedented functions can be developed. Concretely, application to solid state devices for detecting signals in the terahertz region, new thermoelectric conversion materials, etc. is considered possible. In the future, research will be carried out aiming at development of new materials with possible practical applications.


Story Source:

The above story is based on materials provided by National Institute for Materials Science. Note: Materials may be edited for content and length.


Journal Reference:

  1. S. Calder, V. Garlea, D. McMorrow, M. Lumsden, M. Stone, J. Lang, J.-W. Kim, J. Schlueter, Y. Shi, K. Yamaura, Y. Sun, Y. Tsujimoto, A. Christianson. Magnetically Driven Metal-Insulator Transition in NaOsO_{3}. Physical Review Letters, 2012; 108 (25) DOI: 10.1103/PhysRevLett.108.257209

Cite This Page:

National Institute for Materials Science. "Development of 'Slater insulator' that rapidly changes from conductor to insulator at room temperature." ScienceDaily. ScienceDaily, 11 July 2012. <www.sciencedaily.com/releases/2012/07/120711134534.htm>.
National Institute for Materials Science. (2012, July 11). Development of 'Slater insulator' that rapidly changes from conductor to insulator at room temperature. ScienceDaily. Retrieved December 19, 2014 from www.sciencedaily.com/releases/2012/07/120711134534.htm
National Institute for Materials Science. "Development of 'Slater insulator' that rapidly changes from conductor to insulator at room temperature." ScienceDaily. www.sciencedaily.com/releases/2012/07/120711134534.htm (accessed December 19, 2014).

Share This


More From ScienceDaily



More Matter & Energy News

Friday, December 19, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Building Google Into Cars

Building Google Into Cars

Reuters - Business Video Online (Dec. 19, 2014) Google's next Android version could become the standard that'll power your vehicle's entertainment and navigation features, Reuters has learned. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
AP Review: Nikon D750 and GoPro Hero 4

AP Review: Nikon D750 and GoPro Hero 4

AP (Dec. 19, 2014) What to buy an experienced photographer or video shooter? There is some strong gear on the market from Nikon and GoPro. The AP's Ron Harris takes a closer look. (Dec. 19) Video provided by AP
Powered by NewsLook.com
Double-Amputee Becomes First To Move Two Prosthetic Arms With His Mind

Double-Amputee Becomes First To Move Two Prosthetic Arms With His Mind

Buzz60 (Dec. 19, 2014) A double-amputee makes history by becoming the first person to wear and operate two prosthetic arms using only his mind. Jen Markham has the story. Video provided by Buzz60
Powered by NewsLook.com
Navy Unveils Robot Fish

Navy Unveils Robot Fish

Reuters - Light News Video Online (Dec. 18, 2014) The U.S. Navy unveils an underwater device that mimics the movement of a fish. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins