Featured Research

from universities, journals, and other organizations

How to avoid traps in plastic electronics

Date:
July 30, 2012
Source:
Georgia Institute of Technology, Research Communications
Summary:
Plastic electronics hold the promise of cheap, mass-produced devices. But plastic semiconductors have an important flaw: the electronic current is influenced by “charge traps” in the material. New research reveals a common mechanism underlying these traps and provides a theoretical framework to design trap-free plastic electronics.

This is a visualization of an electron traveling through a potential field with charge traps in plastic electronics.
Credit: Image: Gert-Jan Wetzelaer, University of Groningen

Plastic electronics hold the promise of cheap, mass-produced devices. But plastic semiconductors have an important flaw: the electronic current is influenced by "charge traps" in the material. These traps, which have a negative impact on plastic light-emitting diodes and solar cells, are poorly understood.

However, a new study by a team of researchers from the University of Groningen and the Georgia Institute of Technology reveals a common mechanism underlying these traps and provides a theoretical framework to design trap-free plastic electronics. The results are presented in an advance online publication of the journal Nature Materials.

Plastic semiconductors are made from organic, carbon-based polymers, comprising a tunable forbidden energy gap. In a plastic light-emitting diode (LED), an electron current is injected into a higher molecular orbital, situated just above the energy gap. After injection, the electrons move toward the middle of the LED and fall down in energy across the forbidden energy gap, converting the energy loss into photons. As a result, an electrical current is converted into visible light.

However, during their passage through the semiconductor, a lot of electrons get stuck in traps in the material and can no longer be converted into light. In addition, this trapping process greatly reduces the electron current and moves the location where electrons are converted into photons away from the center of the device.

"This reduces the amount of light the diode can produce," explained Herman Nicolai, first author of the Nature Materials paper.

The traps are poorly understood, and it has been suggested that they are caused by kinks in the polymer chains or impurities in the material.

"We've set out to solve this puzzle by comparing the properties of these traps in nine different polymers," Nicolai explained. "The comparison revealed that the traps in all materials had a very similar energy level."

The Georgia Tech group, led by Jean-Luc Bredas, investigated computationally the electronic structure of a wide range of possible traps. "What we found out from the calculations is that the energy level of the traps measured experimentally matches that produced by a water-oxygen complex," said Bredas.

Nicolai explains that "such a complex could easily be introduced during the manufacturing of the semiconductor material, even if this is done under controlled conditions." The devices Nicolai studied were fabricated in a nitrogen atmosphere, "but this cannot prevent contamination with minute quantities of oxygen and water," he noted.

The fact that the traps have a similar energy level means that it is now possible to estimate the expected electron current in different plastic materials. And it also points the way to trap-free materials. "The trap energy lies in the forbidden energy gap," Nicolai explained.

This energy gap represents the difference in energy of the outer shell in which the electrons circle in their ground state and the higher orbital to which they can be moved to become mobile charge carriers. When such a mobile electron runs into a trap that is within the energy gap it will fall in, because the trap has a lower energy level.

"But if chemists could design semiconducting polymers in which the trap energy is above that of the higher orbital in which the electrons move through the material, they couldn't fall in," he suggested. "In this case, the energy level of the trap would be higher than that of the electron."

The results of this study are therefore important for both plastic LEDs and plastic solar cells. "In both cases, the electron current should not be hindered by charge trapping. With our results, more efficient designs can be made," Nicolai concluded.

The experimental work for this study was done in the Zernike Institute of Advanced Materials (ZIAM) at the faculty of Mathematics and Natural Sciences, University of Groningen, the Netherlands. The theoretical work to identify the nature of the trap was carried out at the School of Chemistry and Biochemistry and Center for Organic Photonics and Electronics at the Georgia Institute of Technology, Atlanta, USA .

The work at the University of Groningen was supported by the European Commission under contract FP7-13708 (AEVIOM). The work at Georgia Tech was supported by the MRSEC program of the National Science Foundation under award number DMR-0819885.


Story Source:

The above story is based on materials provided by Georgia Institute of Technology, Research Communications. Note: Materials may be edited for content and length.


Journal Reference:

  1. H. T. Nicolai, M. Kuik, G. A. H. Wetzelaer, B. de Boer, C. Campbell, C. Risko, J. L. Brιdas, P. W. M. Blom. Unification of trap-limited electron transport in semiconducting polymers. Nature Materials, 2012; DOI: 10.1038/NMAT3384

Cite This Page:

Georgia Institute of Technology, Research Communications. "How to avoid traps in plastic electronics." ScienceDaily. ScienceDaily, 30 July 2012. <www.sciencedaily.com/releases/2012/07/120730094132.htm>.
Georgia Institute of Technology, Research Communications. (2012, July 30). How to avoid traps in plastic electronics. ScienceDaily. Retrieved October 22, 2014 from www.sciencedaily.com/releases/2012/07/120730094132.htm
Georgia Institute of Technology, Research Communications. "How to avoid traps in plastic electronics." ScienceDaily. www.sciencedaily.com/releases/2012/07/120730094132.htm (accessed October 22, 2014).

Share This



More Matter & Energy News

Wednesday, October 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Chameleon Camouflage to Give Tanks Cloaking Capabilities

Chameleon Camouflage to Give Tanks Cloaking Capabilities

Reuters - Innovations Video Online (Oct. 22, 2014) — Inspired by the way a chameleon changes its colour to disguise itself; scientists in Poland want to replace traditional camouflage paint with thousands of electrochromic plates that will continuously change colour to blend with its surroundings. The first PL-01 concept tank prototype will be tested within a few years, with scientists predicting that a similar technology could even be woven into the fabric of a soldiers' clothing making them virtually invisible to the naked eye. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Jet Sales Lift Boeing Profit 18 Pct.

Jet Sales Lift Boeing Profit 18 Pct.

Reuters - Business Video Online (Oct. 22, 2014) — Strong jet demand has pushed Boeing to raise its profit forecast for the third time, but analysts were disappointed by its small cash flow. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
Internet of Things Aims to Smarten Your Life

Internet of Things Aims to Smarten Your Life

AP (Oct. 22, 2014) — As more and more Bluetooth-enabled devices are reaching consumers, developers are busy connecting them together as part of the Internet of Things. (Oct. 22) Video provided by AP
Powered by NewsLook.com
What Is Magic Leap, And Why Is It Worth $500M?

What Is Magic Leap, And Why Is It Worth $500M?

Newsy (Oct. 22, 2014) — Magic Leap isn't publicizing much more than a description of its product, but it’s been enough for Google and others to invest more than $500M. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins