Featured Research

from universities, journals, and other organizations

The spin racket: Ping-pong champs are intuitive masters of fluid dynamics

Date:
August 8, 2012
Source:
American Physical Society's Division of Fluid Dynamics
Summary:
Curve balls may help a pitcher strike out batters in baseball; and some nasty spin can make an opponent sweat to return a tennis serve. But more so than in any other ball game, in table tennis – where the ball is so light and so small –dedicated players must master the physics of spin.

Table tennis players wield their paddles with an intuitive command of the forces of nature. With Newton at their sides, skilled athletes can force a ball to dip, spin, and hop in a constantly shifting strategic game of deception, power, and accuracy.
Credit: © edcel mayo / Fotolia

Table tennis players wield their paddles with an intuitive command of the forces of nature. With Newton at their sides, skilled athletes can force a ball to dip, spin, and hop in a constantly shifting strategic game of deception, power, and accuracy.

Curve balls may help a pitcher strike out batters in baseball; and some nasty spin can make an opponent sweat to return a tennis serve. But more so than in any other ball game, in table tennis -- where the ball is so light and so small -dedicated players must master the physics of spin.

"While [the spin] strategy is also employed in baseball, tennis, cricket, and sometimes soccer, it absolutely dominates the game of ping-pong," says David R. Dowling, professor of mechanical engineering at the University of Michigan in Ann Arbor. "A straight-up fire-throwin' fast ball pitcher may be successful in baseball. However, the equivalent table tennis player, who does not use spin to make the ball's trajectory curve, may easily be defeated by a table tennis player who does use spin."

The reason spin is such a dominating force in ping pong can be seen when you consider that the ball is actually traveling through a fluid, in this case air. In physics terms, when a ball travels without spin, the air moves over the top, bottom, and sides at the same speed and the pressure forces are balanced. However, when a ping pong ball spins as it travels through the air, these pressure forces become imbalanced, causing the ball to veer off to the side or move higher or lower as it flies. Ping-pong players use these imbalanced forces to control a ball's path.

For example, imagine a ping-pong ball somersaulting through the air with top spin. In this case, the top of the ball is moving "into" the wind and the bottom is moving "with" the wind, so the wind's speed is relatively greater on top of the ball than under it. The faster and slower wind speeds translate to higher and lower fluid pressure on the ball. This pressure difference causes a spinning ball to curve toward the side with lower pressure. In the case of a ball with top spin, that means downward.

The phenomenon, which fluid dynamicists call the Magnus effect, can send a ping-pong ball curving up, down, left, or right -- always at a right angle to the direction of motion -- depending on which way the ball is spun.

Fluid dynamics' importance for the sport becomes clearer at high altitudes, where there are fewer air particles for a ball to collide with. Here, the thinner atmosphere reduces an object's air resistance and weakens the Magnus effect, causing a ball with top spin to travel farther than it would at sea level, says environmental fluid mechanics expert Jorge Escobar, an assistant professor at Javeriana University in Bogotá, Colombia, and a competing table tennis player for 15 years. In his city, 9,000 feet (2,745 meters) above sea level, even experienced players might find their returns flying far beyond the edge of the table, Escobar says.

Play depends on more than the density of air; the shape and weight of the ball, as well as the distance it has to travel, also affect how much control a player can exert. A larger or heavier ball could travel the relatively short field of play of a ping-pong table without much spin-induced trickery.

But the smaller and lighter table tennis ball is at the mercy of the Magnus effect -- and inexperienced players are at the mercy of opponents who can skillfully exploit it.

Of course, players don't have to understand the physics behind these effects to take advantage of them in a game. But "if you know a little bit [of] the science behind it, you have a better sense about what you're doing," says Hassan Masoud, mechanical engineer at the Georgia Institute of Technology in Atlanta and a table tennis player himself.

To win at ping-pong, explains Dowling, players have to do something that their opponents are not expecting. Sometimes it's a question of just keeping the ball on the table. Sometimes it's an offensive or defensive move designed to confuse an opponent. Players can "chop," for example, imparting spin to the ball by swinging their rackets so that the ball almost rolls along the surface of the rubber. Or they can "block," stopping a spinning ball and sending it back at the offensive hitter with whatever spin they used themselves. Aggressive players will impose "crazy, crazy spins" on a ball, Escobar says; they might even try to fool their opponents by faking a hand or wrist movement to hide the type of spin they have imparted.

For Olympics spectators interested in watching the fluid dynamics of ping-pong in action, a birds-eye view can reveal the side-to-side curving of a well-spun serve. Dowling also recommends keeping your eyes on the receiver rather than the hitter. In a game that moves so quickly, players must pay attention to how their opponents are hitting the ball and what type of spin they use.

"The player who's about to hit it has already decided what they're going to do," Dowling says. "The receiving player has to be in position and ready, or they're going to be aced."

Dowling and Masoud are both members of the American Physical Society's Division of Fluid Dynamics.


Story Source:

The above story is based on materials provided by American Physical Society's Division of Fluid Dynamics. Note: Materials may be edited for content and length.


Cite This Page:

American Physical Society's Division of Fluid Dynamics. "The spin racket: Ping-pong champs are intuitive masters of fluid dynamics." ScienceDaily. ScienceDaily, 8 August 2012. <www.sciencedaily.com/releases/2012/08/120808104454.htm>.
American Physical Society's Division of Fluid Dynamics. (2012, August 8). The spin racket: Ping-pong champs are intuitive masters of fluid dynamics. ScienceDaily. Retrieved October 22, 2014 from www.sciencedaily.com/releases/2012/08/120808104454.htm
American Physical Society's Division of Fluid Dynamics. "The spin racket: Ping-pong champs are intuitive masters of fluid dynamics." ScienceDaily. www.sciencedaily.com/releases/2012/08/120808104454.htm (accessed October 22, 2014).

Share This



More Matter & Energy News

Wednesday, October 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Thanks, Marty McFly! Hoverboards Could Be Coming In 2015

Thanks, Marty McFly! Hoverboards Could Be Coming In 2015

Newsy (Oct. 21, 2014) — If you've ever watched "Back to the Future Part II" and wanted to get your hands on a hoverboard, well, you might soon be in luck. Video provided by Newsy
Powered by NewsLook.com
Robots to Fly Planes Where Humans Can't

Robots to Fly Planes Where Humans Can't

Reuters - Innovations Video Online (Oct. 21, 2014) — Researchers in South Korea are developing a robotic pilot that could potentially replace humans in the cockpit. Unlike drones and autopilot programs which are configured for specific aircraft, the robots' humanoid design will allow it to fly any type of plane with no additional sensors. Ben Gruber reports. Video provided by Reuters
Powered by NewsLook.com
Graphene Paint Offers Rust-Free Future

Graphene Paint Offers Rust-Free Future

Reuters - Innovations Video Online (Oct. 21, 2014) — British scientists have developed a prototype graphene paint that can make coatings which are resistant to liquids, gases, and chemicals. The team says the paint could have a variety of uses, from stopping ships rusting to keeping food fresher for longer. Jim Drury reports. Video provided by Reuters
Powered by NewsLook.com
China Airlines Swanky New Plane

China Airlines Swanky New Plane

Buzz60 (Oct. 21, 2014) — China Airlines debuted their new Boeing 777, and it's more like a swanky hotel bar than an airplane. Enjoy high-tea, a coffee bar, and a full service bar with cocktails and spirits, and lie-flat in your reclining seats. Sean Dowling (@SeanDowlingTV) has the details. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins