Featured Research

from universities, journals, and other organizations

New light shed on virus associated with developmental delays and deafness

Date:
November 28, 2012
Source:
University of Pittsburgh Schools of the Health Sciences
Summary:
A new study reveals that primitive human stem cells are resistant to human cytomegalovirus (HCMV), one of the leading prenatal causes of congenital intellectual disability, deafness and deformities worldwide. Researchers found that as stem cells and other primitive cells mature into neurons, they become more susceptible to HCMV, which could allow them to find effective treatments for the virus and to prevent its potentially devastating consequences.

A new study published online in PLOS ONE reveals that primitive human stem cells are resistant to human cytomegalovirus (HCMV), one of the leading prenatal causes of intellectual disability, deafness and deformities worldwide. Researchers from the University of Pittsburgh School of Medicine found that as stem cells and other primitive cells mature into neurons, they become more susceptible to HCMV, which could allow them to find effective treatments for the virus and to prevent its potentially devastating consequences.

Related Articles


"Previous studies have focused on other species and other cell types, but those studies did not evaluate what the cytomegalovirus does to human brain cells," said Vishwajit Nimgaonkar, M.D., Ph.D., professor of psychiatry at the University of Pittsburgh School of Medicine, and senior author of the report. "This study is the first of its kind, and the first to discover that primitive stem cells are actually resistant to HCMV."

Access to cultured human neurons, necessary to understand the pathogenic effects of HCMV, has been limited by difficulties in growing the brain cells in the laboratory. Yet through human-induced pluripotent stem (iPS) cells, researchers were able to overcome this hurdle.

The study authors derived live iPS cells by reprogramming cells called fibroblasts obtained from human skin biopsies. The iPS cells were then induced to mature through several stages into neurons, the primary cells in the brain. The researchers were able to evaluate the patterns of damage caused by HCMV on all these cells.

The research findings suggest:

• Human iPS cells do not permit a full viral replication cycle, suggesting for the first time that these cells can resist CMV infection

• CMV infection distorts iPS cell differentiation into neurons, and that may be a mechanism by which infected babies develop impairments of brain maturation and intellectual ability

• iPS-derived mature neurons are more susceptible to CMV infection and once infected show effects including defective function that have been shown in other animal studies and in other human tissues, and the neurons die a few days after infection lab studies, possibly reflecting the impact of CMV on the human brain

"The findings were quite surprising, but this is only the first in a series of studies on HCMV," added Nimgaonkar. "There is a lot of interest in what we can do to treat the infection, and current work is already underway to screen for new drugs that could be used to fight these viruses."

Between 50 and 80 percent of people in the U.S. have been infected by HCMV by the time they reach 40. Infections are rarely serious, but the virus does not leave the body. CMV is also the most common congenital infection in the U.S., and occurs when a mother contracts CMV during pregnancy and passes the virus to her unborn child. According to the U.S. Centers for Disease Control and Prevention, one of every 150 children are born with CMV infection and one in five of them develop permanent problems, such as intellectual disability, vision and hearing loss, and seizures.

Pitt researchers are collaborating with the Drug Discovery Institute to further understand the cellular system and determine which agents are most effective against HCMV and similar viruses, and which treatments would be safe for human use.

The lead author of the report is Leonardo D'Aiuto, Ph.D., of the University of Pittsburgh. Collaborators on this study include Roberto Di Maio, Ph.D., Brianna Heath, Giorgio Raimondi, Ph.D., Jadranka Milosevic, Ph.D., Annie M Watson, Mikhil Bamne, Ph.D., W Tony Parks, M.D., Lei Yang, Ph.D., Bo Lin, Ph.D, Toshio Miki, M.D., Ph.D., Jocelyn Danielle Mich-Basso, Etienne Sibille, Ph.D., all of the University of Pittsburgh, and Ravit Arav-Boger, M.D., Sarven Sabunciyan, Ph.D., Robert Yolken, M.D., all of Johns Hopkins School of Medicine.


Story Source:

The above story is based on materials provided by University of Pittsburgh Schools of the Health Sciences. Note: Materials may be edited for content and length.


Journal Reference:

  1. Leonardo D'Aiuto, Roberto Di Maio, Brianna Heath, Giorgio Raimondi, Jadranka Milosevic, Annie M. Watson, Mikhil Bamne, W. Tony Parks, Lei Yang, Bo Lin, Toshio Miki, Jocelyn Danielle Mich-Basso, Ravit Arav-Boger, Etienne Sibille, Sarven Sabunciyan, Robert Yolken, Vishwajit Nimgaonkar. Human Induced Pluripotent Stem Cell-Derived Models to Investigate Human Cytomegalovirus Infection in Neural Cells. PLoS ONE, 2012; 7 (11): e49700 DOI: 10.1371/journal.pone.0049700

Cite This Page:

University of Pittsburgh Schools of the Health Sciences. "New light shed on virus associated with developmental delays and deafness." ScienceDaily. ScienceDaily, 28 November 2012. <www.sciencedaily.com/releases/2012/11/121128143539.htm>.
University of Pittsburgh Schools of the Health Sciences. (2012, November 28). New light shed on virus associated with developmental delays and deafness. ScienceDaily. Retrieved October 25, 2014 from www.sciencedaily.com/releases/2012/11/121128143539.htm
University of Pittsburgh Schools of the Health Sciences. "New light shed on virus associated with developmental delays and deafness." ScienceDaily. www.sciencedaily.com/releases/2012/11/121128143539.htm (accessed October 25, 2014).

Share This



More Health & Medicine News

Saturday, October 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Texas Nurse Nina Pham Cured of Ebola

Texas Nurse Nina Pham Cured of Ebola

AFP (Oct. 25, 2014) — An American nurse who contracted Ebola while caring for a Liberian patient in Texas has been declared free of the virus and will leave the hospital. Duration: 01:01 Video provided by AFP
Powered by NewsLook.com
IKEA Desk Converts From Standing to Sitting With One Button

IKEA Desk Converts From Standing to Sitting With One Button

Buzz60 (Oct. 24, 2014) — IKEA is out with a new convertible desk that can convert from a sitting desk to a standing one with just the push of a button. Jen Markham explains. Video provided by Buzz60
Powered by NewsLook.com
Ebola Protective Suits Being Made in China

Ebola Protective Suits Being Made in China

AFP (Oct. 24, 2014) — A factory in China is busy making Ebola protective suits for healthcare workers and others fighting the spread of the virus. Duration: 00:38 Video provided by AFP
Powered by NewsLook.com
WHO: Millions of Ebola Vaccine Doses by 2015

WHO: Millions of Ebola Vaccine Doses by 2015

AP (Oct. 24, 2014) — The World Health Organization said on Friday that millions of doses of two experimental Ebola vaccines could be ready for use in 2015 and five more experimental vaccines would start being tested in March. (Oct. 24) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins