Featured Research

from universities, journals, and other organizations

Biophysicists unravel cellular 'traffic jams' in active transport

Date:
December 3, 2012
Source:
University of Massachusetts at Amherst
Summary:
Biophysicists have greatly advanced our understanding of how active transport proceeds smoothly, particularly in long cells such as neurons where it is vital to their survival.

This image depicts motor protein traffic along a single microtubule highway. Much like vehicular traffic in real life, kinesin motor traffic reduces the velocity of single motors. Multi-motor “cargos,” such as the quantum dot depicted, can stay attached to the microtubule much longer because they can add multiple motors.
Credit: Leslie Conway and Jennifer Ross, UMass Amherst

Inside many growing cells, an active transport system runs on nano-sized microtubule tracks that resemble a highway, complete with motors carrying cargo quickly from a central supply depot to growing tips or wherever materials are needed. In spite of the cell's busy, high-traffic environment, researchers know the system somehow works efficiently, without accidents or traffic jams.

Related Articles


Now a team of biophysicists at the University of Massachusetts Amherst, using a special technique and unique microscope, have improved upon earlier studies that used too-simple models not able to account for the densely crowded, dynamic conditions in a real cell. The new work, led by biophysicist Jennifer Ross, greatly advances understanding of how active transport proceeds smoothly, particularly in long cells such as neurons where it is vital to their survival. Findings appear in the current early online edition of Proceedings of the National Academies of Science.

Ross says, "What others learned from the simpler models and experiments gave insight into how single motors work, how load affects velocity, and how single motors are stopped by static objects such as microtubule-associated proteins or intersections. But so many questions remained, such as what happens in a high-traffic with many other motors? How can single motors and cargos with many motors efficiently maneuver?"

With this work, she says, "We're getting closer to understanding the more complex, crowded environment of the cell and how large objects, like organelles, can be moved from the cell body in your spine out to your big toe along a neuron one meter long. Although previous studies thought that traffic would be a problem because it would cause motors to detach, we found it is not a problem for an organelle because there are so many motors. We found that the traffic would slow you down, but not enough to hurt any essential processes. It would take the organelle 12 days instead of six to travel a meter."

A key to Ross and colleagues' experimental system is a custom-built, single-molecule total internal reflection fluorescence (TIRF) microscope she built for her laboratory. It is much brighter than commercially available instruments and gives researchers the remarkable ability to see and photograph individual molecules in real time.

For this investigation exploring the effect of high traffic on active transport via microtubules, they also used quantum dots (Qdots), a nanocrystal of semiconductor material that fluoresces in different colors based on size, making them useful biological probes, Ross points out. "We use them as a stand-in, a model for common cellular cargo such as a mitochondrion, after we discovered that they bind to multiple cellular kinesin motors. If individual motors are like cars, Qdots are a bus," she adds.

The transportation analogy works remarkably well for understanding the molecular-level active transport system, says Ross. The multi-lane nano-scale microtubule system in a cell is like a multi-lane highway along which essential cargo is moved. An organelle needed at the growing tip floats around until it finds a microtubule. Kinesin motors with two "feet" that fit neatly into the tracks then latch onto it and "walk" along toward the goal in prescribed footprints.

But a basic problem for the motors is they cannot change lanes. If they come upon a slow-moving or stopped motor in the track, all traffic stops in that lane and cargo may be released. This led earlier observers to assert that stalled protein on the microtubules, a "traffic jam," poses a threat to active transport. Yet Ross says evidence doesn't support this view; somehow cells find a way to use active transport smoothly and successfully.

In the UMass Amherst experiments, she says, "We're trying to find out how cells do this, work without accidents or stalls. We set up experiments in which we kept adding motors to see what happens in a high traffic situation." An unusual quality of the Qdots, Ross adds, is that they attach to multiple motors and move along all lanes of traffic at once.

The researchers use three colors for labeling the Qdots, 10 percent of the motors and the microtubules, then take videos in real time to measure how far the single-track motor moves in a given time compared to how far the Qdot goes. They also measured how fast each component moved and how much time each spent on the microtubule.

"We were surprised at first because the Qdot could move eight or 10 microns along the track in these high-traffic situations when a single motor could almost not move at all. Then we realized the Qdot had multiple motors attached and further, it could take on or let go of motors while still holding onto the other parts of the track. They might have 10 motors bound with 20 feet on several tracks. So even if a single motor gets hung up, the cargo can still move," Ross explains.

"Interestingly, the Qdot and single-motor velocities were identical, so they didn't go any faster, they just stayed on longer and it enabled them to go farther. We have showed that having multiple motors is one way a cell can handle high traffic situations in active transport."

"We've shown that high traffic is not an issue. It slows things down but it does not stop transport. I think this is a big discovery. Others before us have said that traffic could bring it all to a halt, but it turns out that if you have multiple motors it would solve this problem."


Story Source:

The above story is based on materials provided by University of Massachusetts at Amherst. Note: Materials may be edited for content and length.


Journal Reference:

  1. Leslie Conway, Derek Wood, Erkan Tüzel, and Jennifer L. Ross. Motor transport of self-assembled cargos in crowded environments. PNAS, December 3, 2012 DOI: 10.1073/pnas.1209304109

Cite This Page:

University of Massachusetts at Amherst. "Biophysicists unravel cellular 'traffic jams' in active transport." ScienceDaily. ScienceDaily, 3 December 2012. <www.sciencedaily.com/releases/2012/12/121203163524.htm>.
University of Massachusetts at Amherst. (2012, December 3). Biophysicists unravel cellular 'traffic jams' in active transport. ScienceDaily. Retrieved October 24, 2014 from www.sciencedaily.com/releases/2012/12/121203163524.htm
University of Massachusetts at Amherst. "Biophysicists unravel cellular 'traffic jams' in active transport." ScienceDaily. www.sciencedaily.com/releases/2012/12/121203163524.htm (accessed October 24, 2014).

Share This



More Health & Medicine News

Friday, October 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

IKEA Desk Converts From Standing to Sitting With One Button

IKEA Desk Converts From Standing to Sitting With One Button

Buzz60 (Oct. 24, 2014) — IKEA is out with a new convertible desk that can convert from a sitting desk to a standing one with just the push of a button. Jen Markham explains. Video provided by Buzz60
Powered by NewsLook.com
Ebola Protective Suits Being Made in China

Ebola Protective Suits Being Made in China

AFP (Oct. 24, 2014) — A factory in China is busy making Ebola protective suits for healthcare workers and others fighting the spread of the virus. Duration: 00:38 Video provided by AFP
Powered by NewsLook.com
WHO: Millions of Ebola Vaccine Doses by 2015

WHO: Millions of Ebola Vaccine Doses by 2015

AP (Oct. 24, 2014) — The World Health Organization said on Friday that millions of doses of two experimental Ebola vaccines could be ready for use in 2015 and five more experimental vaccines would start being tested in March. (Oct. 24) Video provided by AP
Powered by NewsLook.com
Doctor in NYC Quarantined With Ebola

Doctor in NYC Quarantined With Ebola

AP (Oct. 24, 2014) — An emergency room doctor who recently returned to the city after treating Ebola patients in West Africa has tested positive for the virus. He's quarantined in a hospital. (Oct. 24) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins