Featured Research

from universities, journals, and other organizations

Neuroscience: The extraordinary ease of ordinal series

Date:
December 20, 2012
Source:
Frontiers
Summary:
Familiar categories whose members appear in orderly sequences are processed differently than others in the brain, according to new research.

Familiar categories whose members appear in orderly sequences are processed differently than others in the brain, according to new research published by David Eagleman in the open access journal Frontiers in Neuroscience on December 20th, 2012. The study suggests that ordinal sequences have a strong spatial quality and activate a region of the brain not thought to be directly involved in language acquisition and production. Also, sequences shown in the correct order stimulated less brain activity in comparison to sequences that were not in the correct order, implying that the brain could predict what was coming and needed less activity to understand it.

Related Articles


"When an event happens, the brain can use less energy in its response if it has already predicted that event," says Eagleman of the Baylor College of Medicine in Houston, Texas. "Fundamentally, its job is to make a good model of the world so that it can avoid being surprised. The better it predicts, the more energy it saves."

Previous research suggested that so-called ordinal categories have unique properties that are encoded differently from non-ordinal sequences.

In some forms of dementia, for example, memories for ordinal stimuli such as numbers are spared, while those for non-ordinal stimuli, such as the names of animals or fruits, are impaired. And in a neurological condition called synesthesia, sensory experiences such as colour are triggered by unrelated inputs, especially ordinal stimuli such as numbers, letters and months of the year.

Until now, however, little was known about the neural representation of ordinal sequences.

To investigate, David Eagleman and his team recruited 35 participants and used functional magnetic resonance imaging (fMRI) to measure their brain activity while they performed an "oddball" task.

The participants were presented with lists of five words that appeared one after the other for half a second each. In one condition, ordinal words were shown in their correct order (e.g. Monday, Tuesday, Wednesday, Thursday, Friday). The second condition involved ordinal words presented in a scrambled order, and the third contained words belonging to non-ordinal categories.

Each participant completed 20 practice trials before being placed into the scanner to perform 120 more. During half of the trials, the fifth word in the sequence was replaced with an oddball stimulus, such as four days of the week followed by the word "banana," or four fruits followed by a number.

After completing each trial, the participants were simply required to indicate whether or not it contained an oddball stimulus, by pressing one of two buttons.

The researchers compared the brain scans obtained during the different trials, to determine which brain regions responded to ordinal words, and how the predictability of the word sequences affected the patterns of brain activity. Scrambled sequences (such as Sunday, Wednesday, Tuesday, Friday) elicited greater activity than did sequences in their correct order.

In other words, the more predictable a sequence of ordinal words was, the less brain activity it evoked. This, the researchers say, is direct evidence that long-term experience dampens neural activity. The brain pays little attention to stimuli that are familiar, but alarm bells start to ring when those that do not meet our expectations.

Further, the study revealed that the processing of ordinal words involves more activation of the right hemisphere than the left -- a surprise finding given that language is typically a left hemisphere phenomenon.

"We are just beginning experiments in which we teach people with synesthesia a new alphabet of arbitrary symbols -- what we call an 'alien' alphabet. Through the use of video games, we rigorously train them on this novel sequence. We predict that the arbitrary symbols will take on synesthetic colors, and that the representation of those symbols move from the left to the right hemisphere."


Story Source:

The above story is based on materials provided by Frontiers. Note: Materials may be edited for content and length.


Journal Reference:

  1. Vani Pariyadath, Mark H. Plitt, Sara J. Churchill, David M. Eagleman. Why overlearned sequences are special: distinct neural networks for ordinal sequences. Frontiers in Human Neuroscience, 2012; 6 DOI: 10.3389/fnhum.2012.00328

Cite This Page:

Frontiers. "Neuroscience: The extraordinary ease of ordinal series." ScienceDaily. ScienceDaily, 20 December 2012. <www.sciencedaily.com/releases/2012/12/121220080447.htm>.
Frontiers. (2012, December 20). Neuroscience: The extraordinary ease of ordinal series. ScienceDaily. Retrieved December 21, 2014 from www.sciencedaily.com/releases/2012/12/121220080447.htm
Frontiers. "Neuroscience: The extraordinary ease of ordinal series." ScienceDaily. www.sciencedaily.com/releases/2012/12/121220080447.htm (accessed December 21, 2014).

Share This


More From ScienceDaily



More Mind & Brain News

Sunday, December 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Researchers Test Colombian Village With High Alzheimer's Rates

Researchers Test Colombian Village With High Alzheimer's Rates

AFP (Dec. 19, 2014) In Yarumal, a village in N. Colombia, Alzheimer's has ravaged a disproportionately large number of families. A genetic "curse" that may pave the way for research on how to treat the disease that claims a new victim every four seconds. Duration: 02:42 Video provided by AFP
Powered by NewsLook.com
Double-Amputee Becomes First To Move Two Prosthetic Arms With His Mind

Double-Amputee Becomes First To Move Two Prosthetic Arms With His Mind

Buzz60 (Dec. 19, 2014) A double-amputee makes history by becoming the first person to wear and operate two prosthetic arms using only his mind. Jen Markham has the story. Video provided by Buzz60
Powered by NewsLook.com
Prenatal Exposure To Pollution Might Increase Autism Risk

Prenatal Exposure To Pollution Might Increase Autism Risk

Newsy (Dec. 18, 2014) Harvard researchers found children whose mothers were exposed to high pollution levels in the third trimester were twice as likely to develop autism. Video provided by Newsy
Powered by NewsLook.com
Yoga Could Be As Beneficial For The Heart As Walking, Biking

Yoga Could Be As Beneficial For The Heart As Walking, Biking

Newsy (Dec. 17, 2014) Yoga can help your weight, blood pressure, cholesterol and heart just as much as biking and walking does, a new study suggests. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins