Featured Research

from universities, journals, and other organizations

Chance finding reveals new control on blood vessels in developing brain

Date:
January 24, 2013
Source:
University of Wisconsin-Madison
Summary:
Zhen Huang freely admits he was not interested in blood vessels four years ago when he was studying brain development in a fetal mouse. Instead, he wanted to see how changing a particular gene in brain cells called glia would affect the growth of neurons. The result was hemorrhage, caused by deteriorating veins and arteries, and it begged for explanation.

Photo: In a study that demonstrates a close connection between the development of brain cells and blood vessels, blood vessels (green) grow normally in a developing mouse brain on left. On right, blood vessels (red) have collapsed in mice with a defective gene in glial cells, which support the growth of the neurons that carry nerve signals. The research, by Zhen Huang, a neuroscientist at the University of Wisconsin–Madison, shows how developing neural cells control the growth of blood vessels.
Credit: Zhen Huang

Zhen Huang freely admits he was not interested in blood vessels four years ago when he was studying brain development in a fetal mouse.

Instead, he wanted to see how changing a particular gene in brain cells called glia would affect the growth of neurons.

The result was hemorrhage, caused by deteriorating veins and arteries, and it begged for explanation.

"It was a surprising finding," says Huang, an assistant professor of neuroscience and neurology at the University of Wisconsin-Madison. "I was mainly interested in the neurological aspect, how the brain develops and wires itself to prepare for all the wonderful things it does."

But chance favors the prepared mind, as Louis Pasteur said, and Huang knew he needed to follow up on the suggestion that glia, normally considered "helpers" for the neurons, would affect the growth of blood vessels. For one thing, blood flow is a big deal in the brain, says Huang, whose collaborators included Shang Ma, in the graduate program in cellular and molecular biology at UW-Madison. "We know the brain is very energy-intensive. Per unit of volume, it consumes 10 times as much oxygen as the rest of the body."

Although it makes intuitive sense that blood vessel development should be guided by neuronal development in some fashion, Huang spent years making sure he wasn't being mislead by his experiment. Now, he's satisfied himself, and his scientific reviewers, and the journal PLOS Biology has just published his study.

Glial cells in the nervous system establish a nurturing environment for neurons but do not carry signals. In particular, Huang looked at "radial glial cells," which also act as stem cells in creating new neurons. Radial glia extend from the inside of the brain to the outside, and also guide growing neurons to their final locations.

A standard way to find out what cells and genes do is to "knock out" specific genes, using a technology invented at UW-Madison by former professor Oliver Smithies (who shared the 2010 Nobel Prize for this discovery).

When Huang grew mice with a "knock out" mutation that blocked cell division among the radial glia, he expected to see abnormalities in the embryonic brain. But the major abnormality was completely unexpected: blood vessels that had already formed had collapsed.

New blood vessels in an embryo generally develop via a two-step process, first growing, and then stabilizing. "If the second step cannot be carried out, the vessels may already be formed, but the organ still cannot get its blood supply because the vessel will regress, or collapse," Huang says.

When blood vessels collapse, neurons start to die, says Huang. Some brain diseases, including Alzheimer's and hemorrhagic stroke, show a similar regression, and Huang says it's possible that the signaling mechanism that he experimentally blocked may play a role in these diseases as well.

Although any clinical treatment is years away, Huang is still basking in the thrill of basic discovery.

"We find that these progenitor and helper cells, the radial glia, regulate blood vessel development, and nobody has found that before." Huang says. "We used a mouse with alterations in genetics that regulate activity in these helper cells in the brain, and were very surprised to see that this had a drastic effect on blood vessel development. Previously it was always thought that these were two separate systems, now we know there is crosstalk between them. It's almost like a new field has opened up."


Story Source:

The above story is based on materials provided by University of Wisconsin-Madison. The original article was written by David Tenenbaum. Note: Materials may be edited for content and length.


Journal Reference:

  1. Shang Ma, Hyo Jun Kwon, Heidi Johng, Keling Zang, Zhen Huang. Radial Glial Neural Progenitors Regulate Nascent Brain Vascular Network Stabilization Via Inhibition of Wnt Signaling. PLoS Biology, 2013; 11 (1): e1001469 DOI: 10.1371/journal.pbio.1001469

Cite This Page:

University of Wisconsin-Madison. "Chance finding reveals new control on blood vessels in developing brain." ScienceDaily. ScienceDaily, 24 January 2013. <www.sciencedaily.com/releases/2013/01/130124150847.htm>.
University of Wisconsin-Madison. (2013, January 24). Chance finding reveals new control on blood vessels in developing brain. ScienceDaily. Retrieved September 15, 2014 from www.sciencedaily.com/releases/2013/01/130124150847.htm
University of Wisconsin-Madison. "Chance finding reveals new control on blood vessels in developing brain." ScienceDaily. www.sciencedaily.com/releases/2013/01/130124150847.htm (accessed September 15, 2014).

Share This



More Health & Medicine News

Monday, September 15, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Respiratory Virus Spreads To Northeast, Now In 21 States

Respiratory Virus Spreads To Northeast, Now In 21 States

Newsy (Sep. 14, 2014) The respiratory virus Enterovirus D68, which targets children, has spread from the Midwest to 21 states. Video provided by Newsy
Powered by NewsLook.com
Shocker: Journalists Are Utterly Addicted To Coffee

Shocker: Journalists Are Utterly Addicted To Coffee

Newsy (Sep. 13, 2014) A U.K. survey found that journalists consumed the most amount of coffee, but that's only the tip of the coffee-related statistics iceberg. Video provided by Newsy
Powered by NewsLook.com
Contagious Respiratory Illness Continues to Spread Across U.S.

Contagious Respiratory Illness Continues to Spread Across U.S.

Reuters - US Online Video (Sep. 12, 2014) Hundreds of children in several states have been stricken by a serious respiratory illness that is spreading across the U.S. Linda So reports. Video provided by Reuters
Powered by NewsLook.com
Ebola Batters Sierra Leone Economy Too

Ebola Batters Sierra Leone Economy Too

Reuters - Business Video Online (Sep. 12, 2014) The World Health Organisation warns that local health workers in West Africa can't keep up with Ebola - and among those countries hardest hit by the outbreak, the economic damage is coming into focus, too. As David Pollard reports, Sierra Leone admits that growth in one of the poorest economies in the region is taking a beating. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

    Technology News



    Save/Print:
    Share:

    Free Subscriptions


    Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

    Get Social & Mobile


    Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

    Have Feedback?


    Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
    Mobile: iPhone Android Web
    Follow: Facebook Twitter Google+
    Subscribe: RSS Feeds Email Newsletters
    Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins