Featured Research

from universities, journals, and other organizations

New material interface improves functioning of non-silicon-based electronic devices

Date:
February 19, 2013
Source:
Penn State
Summary:
For the first time, researchers have designed a special material interface that has been shown to add to and to improve the functioning of non-silicon-based electronic devices, such as those used in certain kinds of random access memory. The new method could be used to design improved, more-efficient, multilevel and multifunctional devices, as well as enhanced nanoelectronic components -- such as non-volatile information storage and processing; and spintronic components -- an emerging technology that uses the natural spin of the electron to power devices.

Schematic drawing of the multiferroic tunnel junction of two polarization configurations. The red layer is the ferroelectric barrier and the green layer is the interface that undergoes metal-to-insulator as well as magnetic-phase transition when the barrier polarization is reversed.
Credit: Li lab, Penn State University

For the first time, researchers have designed a special material interface that has been shown to add to and to improve the functioning of non-silicon-based electronic devices, such as those used in certain kinds of random access memory (RAM). According to Qi Li, a professor of physics at Penn State University and the leader of the research team, the new method could be used to design improved, more-efficient, multilevel and multifunctional devices, as well as enhanced nanoelectronic components -- such as non-volatile information storage and processing; and spintronic components -- an emerging technology that uses the natural spin of the electron to power devices.

The research has been accepted for publication in the journal Nature Materials.

Li explained that most modern-day electronic chips -- integrated circuits that serve as the building blocks for semiconductor electronic devices such as solar cells, personal computers, and cell phones -- use silicon transistors to process "logical states," or the binary system of ones and zeros used by computers. This binary information is stored for fast access in RAM and also permanently in a magnetic form on hard disks. In this system, the numeral 1 can be understood as "on" -- with a current of electrons flowing freely -- and the numeral 0 as "off" -- with a current blocked. However, in recent years, Li said, researchers in laboratories across the world have been experimenting with different, non-silicon materials that "can toggle between a multilevel state system and can bring the memory into logic operation," and also function with greater speed and less power consumption than are possible with current technology.

Now, in a new research study, Li and her colleagues have designed and tested an alternative way of creating a device that is compatible with non-silicon technology and that combines into one device both an electronic and a magnetic junction. "Magnetic tunnel junctions -- which include two magnetic metallic layers with a very thin insulator barrier in between -- have been used for binary-state devices, such as magnetic random-access memories (MRAM). Tunneling itself is a quantum-mechanical effect," Li said. "Our goal was to create a multifunctional device with improved function by adding what we call a ferroelectric-magnetic interface -- a ferroelectric layer replacing the insulator barrier and a special interface layer, less than one nanometer thick, built into the device that acts to change from metal to insulator as well as from ferromagnetic to antiferromagnetic in response to the negative or positive charge polarization of the barrier." Thanks to this interface and through a phenomenon called the tunneling electroresistance effect, Li said, "we have found that the binary-state resistance difference, or the 1/0 system, is enhanced by up to 10,000 percent. This device is considered a quaternary-state device because we have integrated ferroelectric tunneling -- which can be used as a switch or memory -- into magnetic tunnel junctions, a type of magnetic memory."

Li added that her team's newly designed interface is special because the oxide materials used to build it are "multiferroic" -- one side magnetic and the other ferroelectric, with the magnetic layer changing with the ferroelectric switching. Ferroelectric materials, which are used in the capacitors built into medical ultrasound machines, as well as in other memory devices such as hotel key cards, have a spontaneous electric polarization of negative and positive charges that can be reversed. On the other hand, ferromagnetic materials, such as iron, form permanent magnets with magnetization direction also reversible. "Because our new interface combines both magnetic and ferroelectric properties and because we utilize the coupling effect between the two, we can reproduce a similar binary system with a much larger resistance difference between the two charge-polarization directions. With future modifications, faster switching and storage, or toggling, between 1 and 0 with the information also stored in the same device (or between the states of 1, 2, 3, and 4) may be possible," Li said. "With a 10,000-percent enhancement, the 1 is a stronger 1 and the 0 is a stronger 0, thanks to the physical properties of the materials used to build the interface structures. Stronger 1s and 0s mean sharper switching or fewer memory errors and better and faster information processing and storage power."

Li said that non-silicon materials that use enhanced tunneling-electroresistance-effect technology may be many years away from being available in personal computers and cell phones. However, her research is a next step toward demonstrating the feasibility of this technology. "A few of the exciting outcomes of a multiferroic interface built into tunnel junctions would be doubling the memory states from two to four, a switch and a memory in one chip, and electrical control of the magnetic devices. For example, a new generation of non-volatile multilevel data processing and storage would be possible with the combined memory of MRAM and ferroelectric RAM (fRAM) or logic operation." Li said.

Li explained that memory is considered non-volatile if it is stored even when it is not powered. "Most computers use dynamic random-access memory (dRAM) -- a form of computer data storage in which stored information fades from the capacitor unless it is refreshed periodically," Li said. "But with both MRAM and fRAM, if you shut down your computer while you are watching a video, then the video would pop back up on the screen immediately as soon as you powered the computer back on again. No restart of the window in your personal computer would be necessary."


Story Source:

The above story is based on materials provided by Penn State. The original article was written by Katrina Voss. Note: Materials may be edited for content and length.


Journal Reference:

  1. Y. W. Yin, J. D. Burton, Y-M. Kim, A. Y. Borisevich, S. J. Pennycook, S. M. Yang, T. W. Noh, A. Gruverman, X. G. Li, E. Y. Tsymbal, Qi Li. Enhanced tunnelling electroresistance effect due to a ferroelectrically induced phase transition at a magnetic complex oxide interface. Nature Materials, 2013; DOI: 10.1038/nmat3564

Cite This Page:

Penn State. "New material interface improves functioning of non-silicon-based electronic devices." ScienceDaily. ScienceDaily, 19 February 2013. <www.sciencedaily.com/releases/2013/02/130219091012.htm>.
Penn State. (2013, February 19). New material interface improves functioning of non-silicon-based electronic devices. ScienceDaily. Retrieved October 20, 2014 from www.sciencedaily.com/releases/2013/02/130219091012.htm
Penn State. "New material interface improves functioning of non-silicon-based electronic devices." ScienceDaily. www.sciencedaily.com/releases/2013/02/130219091012.htm (accessed October 20, 2014).

Share This



More Computers & Math News

Monday, October 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Japanese Scientists Unveil Floating 3D Projection

Japanese Scientists Unveil Floating 3D Projection

Reuters - Innovations Video Online (Oct. 20, 2014) Scientists in Tokyo have demonstrated what they say is the world's first 3D projection that floats in mid air. A laser that fires a pulse up to a thousand times a second superheats molecules in the air, creating a spark which can be guided to certain points in the air to shape what the human eye perceives as an image. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Google To Protect Against Piracy ... At A Cost

Google To Protect Against Piracy ... At A Cost

Newsy (Oct. 20, 2014) Google is changing its search-engine results to protect content producers from piracy — for a price. Video provided by Newsy
Powered by NewsLook.com
What We Know About Microsoft's Rumored Smartwatch

What We Know About Microsoft's Rumored Smartwatch

Newsy (Oct. 20, 2014) Microsoft will reportedly release a smartwatch that works across different mobile platforms, has a two-day battery life and tracks heart rate. Video provided by Newsy
Powered by NewsLook.com
Is Spotify Family A Great Deal Or Catching Up?

Is Spotify Family A Great Deal Or Catching Up?

Newsy (Oct. 20, 2014) Spotify Family lets you add a family member to your account for half price. Although users are excited, it's a move competitors have already made. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins