Featured Research

from universities, journals, and other organizations

Unlocking fuel cell conductivity

Date:
February 27, 2013
Source:
Springer Science+Business Media
Summary:
Work on a high-conductivity material demonstrates the role of oxygen ions in enhancing their capabilities.

Work on a high-conductivity material demonstrates the role of oxygen ions in enhancing their capabilities.

Related Articles


Yttria stabilized zirconia, also known as YSZ, is a material of great interest because of its relatively high oxygen-ion based conductivity. In particular, it finds applications in electrochemical devices, such as solid oxide fuel cells and oxygen sensors. In a study published in EPJ B, Kia Ngai, from the University of Pisa in Italy, and colleagues from the Complutense University in Madrid, Spain, devised a model of the oxygen-ion dynamics that contribute to the conductivity of YSZ.

The problem is that fuel cells currently operate above 700 ēC, which strongly limits their use. Understanding oxygen-ion diffusion is key to helping lower operating temperature down to room temperature. Previous attempts to do so were done with the so-called coupling model (CM), describing simple physical concepts related to ion-ion interaction. This helped uncover the importance of ion-ion correlation in limiting long-range ion mobility, and thus conductivity.

The trouble is that experiments show that ionic conductivity in YSZ requires an activation energy that is much higher than that supplied by computer simulations describing independent ion hopping. Relying on the CM model, the authors first established a quantitative description of the ion dynamics in YSZ. Then they compared the predictions of the CM with experimental results and with simulations, particularly those of nanometric-scale thin films, published in the last ten years.

Thus, in their model, they established the connection between the level of the energy barrier for independent ion-hopping simulations and the level of activation energy measured experimentally for long-range movement of oxygen ions. In addition, they attributed an increase of the conductivity in nanometers-thick YSZ films to a decrease in the ion-ion correlations. This model could also be used to study the conductivity relaxation of so-called molten, glassy and crystalline ionic conductors and ambient temperature ionic liquids.


Story Source:

The above story is based on materials provided by Springer Science+Business Media. Note: Materials may be edited for content and length.


Journal Reference:

  1. K. L. Ngai, J. Santamaria, Carlos Leon. Dynamics of interacting oxygen ions in yttria stabilized zirconia: bulk material and nanometer thin films. The European Physical Journal B, 2013; 86 (1) DOI: 10.1140/epjb/e2012-30737-2

Cite This Page:

Springer Science+Business Media. "Unlocking fuel cell conductivity." ScienceDaily. ScienceDaily, 27 February 2013. <www.sciencedaily.com/releases/2013/02/130227113002.htm>.
Springer Science+Business Media. (2013, February 27). Unlocking fuel cell conductivity. ScienceDaily. Retrieved November 27, 2014 from www.sciencedaily.com/releases/2013/02/130227113002.htm
Springer Science+Business Media. "Unlocking fuel cell conductivity." ScienceDaily. www.sciencedaily.com/releases/2013/02/130227113002.htm (accessed November 27, 2014).

Share This


More From ScienceDaily



More Matter & Energy News

Thursday, November 27, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

NASA's First 3-D Printer In Space Creates Its First Object

NASA's First 3-D Printer In Space Creates Its First Object

Newsy (Nov. 26, 2014) — The International Space Station is now using a proof-of-concept 3D printer to test additive printing in a weightless, isolated environment. Video provided by Newsy
Powered by NewsLook.com
Bolivian Recycling Initiative Turns Plastic Waste Into School Furniture

Bolivian Recycling Initiative Turns Plastic Waste Into School Furniture

Reuters - Innovations Video Online (Nov. 26, 2014) — Innovative recycling project in La Paz separates city waste and converts plastic garbage into school furniture made from 'plastiwood'. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com
Blu-Ray Discs Getting Second Run As Solar Panels

Blu-Ray Discs Getting Second Run As Solar Panels

Newsy (Nov. 26, 2014) — Researchers at Northwestern University are repurposing Blu-ray movies for better solar panel technology thanks to the discs' internal structures. Video provided by Newsy
Powered by NewsLook.com
Today's Prostheses Are More Capable Than Ever

Today's Prostheses Are More Capable Than Ever

Newsy (Nov. 26, 2014) — Advances in prosthetics are making replacement body parts stronger and more lifelike than they’ve ever been. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins