Featured Research

from universities, journals, and other organizations

Researchers develop AFM-IR for nanometer scale chemical identification

Date:
March 8, 2013
Source:
University of Illinois College of Engineering
Summary:
Researchers report that they have measured the chemical properties of polymer nanostructures as small as 15 nm, using a novel technique called atomic force microscope infrared spectroscopy.

The chemical properties of these polymer nanostructures were measured using AFM-IR.
Credit: Image courtesy of University of Illinois College of Engineering

For more than 20 years, researchers have been using atomic force microscopy (AFM) to measure and characterize materials at the nanometer scale. However AFM-based measurements of chemistry and chemical properties of materials were generally not possible, until now.

Related Articles


Researchers at the University Illinois report that they have measured the chemical properties of polymer nanostructures as small as 15 nm, using a novel technique called atomic force microscope infrared spectroscopy (AFM-IR). The article, "Atomic force microscope infrared spectroscopy on 15nm scale polymer nanostructures," appears in the Review of Scientific Instruments 84, published by the American Institute of Physics.

"AFM-IR is a new technique for measuring infrared absorption at the nanometer scale," explained William P. King, an Abel Bliss Professor in the Department of Mechanical Science and Engineering at Illinois. "The first AFM-based measurements could measure the size and shape of nanometer-scale structures. Over the years, researchers improved AFM to measure mechanical properties and electrical properties on the nanometer scale.

"These infrared absorption properties provide information about chemical bonding in a material sample, and these infrared absorption properties can be used to identify the material," added King, who is also the director of the National Science Foundation (NSF) Center for Nanoscale Chemical-Electrical-Mechanical Manufacturing Systems at Illinois. "The polymer nanostructures are about an order of magnitude smaller than those measured previously."

The research is enabled by a new way to analyze the way the nanometer-scale dynamics within the AFM-IR system. The researchers analyzed the AFM-IR dynamics using a wavelet transform, which organizes the AFM-IR signals that vary in both time and in frequency. By separating the time and frequency components, the researchers were able to improve the signal to noise within AFM-IR and to thereby measure significantly smaller samples than previously possible.

The ability to measure the chemical composition of polymer nanostructures is important for a variety of applications, including semiconductors, composite materials, and medical diagnostics.

The authors on the research are Jonathan Felts, Hanna Cho, Min-Feng Yu, Lawrence Bergman, Alex Vakkakis, and William P. King.


Story Source:

The above story is based on materials provided by University of Illinois College of Engineering. Note: Materials may be edited for content and length.


Journal Reference:

  1. Jonathan R. Felts, Hanna Cho, Min-Feng Yu, Lawrence A. Bergman, Alexander F. Vakakis, William P. King. Atomic force microscope infrared spectroscopy on 15 nm scale polymer nanostructures. Review of Scientific Instruments, 2013; 84 (2): 023709 DOI: 10.1063/1.4793229

Cite This Page:

University of Illinois College of Engineering. "Researchers develop AFM-IR for nanometer scale chemical identification." ScienceDaily. ScienceDaily, 8 March 2013. <www.sciencedaily.com/releases/2013/03/130308183848.htm>.
University of Illinois College of Engineering. (2013, March 8). Researchers develop AFM-IR for nanometer scale chemical identification. ScienceDaily. Retrieved January 27, 2015 from www.sciencedaily.com/releases/2013/03/130308183848.htm
University of Illinois College of Engineering. "Researchers develop AFM-IR for nanometer scale chemical identification." ScienceDaily. www.sciencedaily.com/releases/2013/03/130308183848.htm (accessed January 27, 2015).

Share This


More From ScienceDaily



More Matter & Energy News

Tuesday, January 27, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

More Guns Found in Carry-on Bags at US Airports

More Guns Found in Carry-on Bags at US Airports

AP (Jan. 27, 2015) The Transportation Security Administration says officers discovered 2,212 firearms during safety screenings last year, a 22 percent jump over 2013. (Jan. 27) Video provided by AP
Powered by NewsLook.com
Cablevision Enters Wi-Fi Phone Fray

Cablevision Enters Wi-Fi Phone Fray

Reuters - Business Video Online (Jan. 26, 2015) The entry by Cablevision and Google could intensify the already heated price wars for mobile phone service. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
Hector the Robot Mimics a Giant Stick Insect

Hector the Robot Mimics a Giant Stick Insect

Reuters - Innovations Video Online (Jan. 26, 2015) A robot based on a stick insect can navigate difficult terrain autonomously and adapt to its surroundings. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com
Raw: Pilot Uses Full-Plane Parachute in Crash

Raw: Pilot Uses Full-Plane Parachute in Crash

AP (Jan. 26, 2015) A pilot en route to Hawaii crashed his single-engine plane into the Pacific Ocean Monday and escaped safely thanks to the use of a full-plane parachute. US Coast Guard video captures the dramatic landing. (Jan. 26) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins