Featured Research

from universities, journals, and other organizations

Backpack mapping system captures intelligence in tough-to-get-to places

Date:
March 26, 2013
Source:
Johns Hopkins University Applied Physics Laboratory
Summary:
Engineers have developed a portable device -- carried in a backpack -- that can be used to automatically create maps in tight spaces where GPS is not readily available – such as in underground areas and on ships.

Engineers at APL have developed a portable mapping system -- carried in a backpack -- that can be used to automatically create annotated physical maps of locations where GPS is not available, such as in underground areas and on ships.
Credit: Image courtesy of Johns Hopkins University Applied Physics Laboratory

Engineers at APL have developed a portable mapping system -- carried in a backpack -- that can be used to automatically create annotated physical maps of locations where GPS is not available, such as in underground areas and on ships.

Related Articles


Produced for the Defense Threat Reduction Agency (DTRA), the Enhanced Mapping and Positioning System (EMAPS) captures a floor-plan-style map of the area traversed, as well as 360-degree photos and sensor readings of that area using a combination of lasers and sensors. The system improves upon algorithms once developed for robots -- which are not practical for all environments -- and has a built-in allowance for normal human movement, like walking.

Using light, detection, and ranging (LIDAR) sensors, EMAPS works while operators walk through an area carrying the unit in a backpack. Designed mainly to detect and map environmental threats on ships and in other tough-to-get-to locations, EMAPS' novel algorithms also associate critical environmental data, such as radiation or radio frequency signal levels, with map locations.

The basic EMAPS unit is an approximately six-inch cube that weighs less than four pounds (smaller than a brick), and includes a 270-degree laser scanner that measures the distances to walls and features in the environment. "EMAPS virtually takes pictures with every step," says Jason Stipes, of the Force Projection Department. "Using this technology, we can map almost every nook and cranny of targeted locations, capture that intelligence, and store it. Sensors can also detect threats, such as radiation or chemicals, and include them in our map."

A second laser scanner is available to allow 3-D data collection, while an inertial sensor measures the roll, pitch, and yaw of the system to compensate for steps taken by the user. In addition, a removable camera system can be used to capture omnidirectional images along the walker's path. A GPS receiver can be connected to EMAPS to allow for georegistration of the data, and an onboard computer stores and processes data in real time.

Stipes says EMAPS has collected more than 100 hours of mapping data from a wide array of GPS-denied environments, including ships, underground storage facilities, Army training areas, and buildings such as the Smithsonian Natural History Museum. The maps include paths that are several miles long, in environments ranging from office buildings to complex engine rooms of ships at sea.

"The EMAPS software addresses a number of challenges using specially developed algorithms," says Stipes. "Working with DTRA, APL engineers have created software to efficiently map data without boundaries while using a fixed amount of computer memory. And, while previous algorithms fail in open areas and long, smooth hallways, we have been able to design algorithms to map these challenging environments."


Story Source:

The above story is based on materials provided by Johns Hopkins University Applied Physics Laboratory. Note: Materials may be edited for content and length.


Cite This Page:

Johns Hopkins University Applied Physics Laboratory. "Backpack mapping system captures intelligence in tough-to-get-to places." ScienceDaily. ScienceDaily, 26 March 2013. <www.sciencedaily.com/releases/2013/03/130326162155.htm>.
Johns Hopkins University Applied Physics Laboratory. (2013, March 26). Backpack mapping system captures intelligence in tough-to-get-to places. ScienceDaily. Retrieved March 26, 2015 from www.sciencedaily.com/releases/2013/03/130326162155.htm
Johns Hopkins University Applied Physics Laboratory. "Backpack mapping system captures intelligence in tough-to-get-to places." ScienceDaily. www.sciencedaily.com/releases/2013/03/130326162155.htm (accessed March 26, 2015).

Share This


More From ScienceDaily



More Matter & Energy News

Thursday, March 26, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Amazon Complains U.S. Is Too Slow To Regulate Drones

Amazon Complains U.S. Is Too Slow To Regulate Drones

Newsy (Mar. 25, 2015) Days after getting approval to test certain commercial drones, Amazon says the Federal Aviation Administration is dragging its feet on the matter. Video provided by Newsy
Powered by NewsLook.com
Smartphone Use Changing Our Brain and Thumb Interaction, Say Researchers

Smartphone Use Changing Our Brain and Thumb Interaction, Say Researchers

Reuters - Innovations Video Online (Mar. 25, 2015) European researchers say our smartphone use offers scientists an ideal testing ground for human brain plasticity. Dr Ako Ghosh&apos;s team discovered that the brains and thumbs of smartphone users interact differently from those who use old-fashioned handsets. Jim Drury went to meet him. Video provided by Reuters
Powered by NewsLook.com
China Wants to Export Its Steel Problem

China Wants to Export Its Steel Problem

Reuters - Business Video Online (Mar. 25, 2015) China is facing a crisis with a glut of steel and growing public anger over the pollution created by production. In a move to solve the problem, some steel mills are looking to relocate overseas. Jane Lanhee Lee reports. Video provided by Reuters
Powered by NewsLook.com
Robot Stays on Its Feet Despite Punishment

Robot Stays on Its Feet Despite Punishment

Reuters - Innovations Video Online (Mar. 24, 2015) Robotic engineers have modelled a two-legged robot to be fast and agile like an ostrich. The design is more efficient and stable than bipedal robots built to move like humans, according to its creators who abuse the poor machine to test its skills. Ben Gruber has more. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins