Featured Research

from universities, journals, and other organizations

Simulations uncover obstacle to harnessing laser-driven fusion: Under realistic conditions, hollow cones fail to guide energetic electrons to fuel

Date:
March 26, 2013
Source:
Ohio Supercomputer Center
Summary:
Researchers have uncovered an obstacle to the cone-guided approach to fast-ignition fusion energy through computer simulations. Scientists found electric fields that build up on the cone's edge reduce the number of energetic electrons being directed by laser beams toward the targeted fuel.

These images from their simulations highlight the trajectories of randomly-selected electrons for a thin cone (left) and thick cone (right), each attached to a copper wire. Background colors show the strength of the electric fields pointing away from the cone and wire. For thin cones, the electric fields act to guide energetic electrons forward into the wire while for thick cones -- a more realistic case -- these fields are too distant to be effective.
Credit: Image courtesy of Ohio Supercomputer Center

A once-promising approach for using next-generation, ultra-intense lasers to help deliver commercially viable fusion energy has been brought into serious question by new experimental results and first-of-a-kind simulations of laser-plasma interaction.

Researchers at The Ohio State University are evaluating a two-stage process in which a pellet of fusion fuel is first crushed by lasers on all sides, shrinking the pellet to dozens of times its original size, followed by an ultra-intense burst of laser light to ignite a chain reaction. This two-stage approach is called Fast Ignition, and there are a few variants on the theme.

In a recent paper, the Ohio State research group considered the long-discussed possibility of using a hollow cone to maintain a channel for the ultra-intense "ignitor pulse" to focus laser energy on the compressed pellet core. Drawing on both experimental results from studies at the Titan Laser at Lawrence Livermore National Laboratory in California, and massively-parallel computer simulations of the laser-target interaction performed at the Ohio Supercomputer Center (OSC) in Columbus, Ohio, the research team found compelling evidence that the cone-guided approach to Fast Ignition has a serious flaw.

"In the history of fusion research, two-steps-forward and one-step-back stories are a common theme," said Chris Orban, Ph.D., a researcher of the High Energy Density Physics research group at Ohio State and the lead theorist on the project. "But sometimes progress is about seeing what's not going to work, just as much as it is looking forward to the next big idea."

Since the ultra-intense pulse delivers energy to the fuel through relativistic electrons accelerated by the laser interaction, the Ohio State study focused on the coupling of the laser light to electrons and the propagation of those electrons through the cone target. Rather than investigating how the interaction would work on a high-demand, high-cost facility like the National Ignition Facility (NIF), which is also based at Lawrence Livermore National Laboratory and one of the largest scientific operations in the world, the researchers considered experiments just across from NIF at the Titan laser, which is much smaller and easily accessible.

These images from their simulations highlight the trajectories of randomly-selected electrons for a thin cone (left) and thick cone (right), each attached to a copper wire. Background colors show the strength of the electric fields pointing away from the cone and wire. For thin cones, the electric fields act to guide energetic electrons forward into the wire while for thick cones -- a more realistic case -- these fields are too distant to be effective. An animation of the simulation is available online at: http://www.physics.ohio-state.edu/~orban/cone_wire_final5mJ_4_5ps.avi.

Despite its size and despite having lower total energy, for a brief moment the Titan laser is many thousands of times more intense than NIF, which makes it a decent stand-in as a second-stage ignitor pulse. The OSU-led experimental team focused the Titan pulse on hollow cone targets attached at the tip to copper wires and observed the burst of X-ray photons coming from the copper as a measure of the laser energy to relativistic electron conversion efficiency.

The X-ray signal was much lower from the hollow cones with thicker cone walls. "This was strong evidence to the experimental team that the typical approach to cone-guided Fast Ignition wouldn't work, since thicker cones should be more realistic than thin cones," said Orban. "This is because electrons are free to move around in a dense plasma, much like they do in a normal metal, so the thicker cone target is like a thin cone embedded in a dense plasma."

These intuitions were tested in simulations performed at OSC. Whereas earlier efforts to simulate the laser-target interaction were forced to simplify or shrink the target size in order to make the calculations more feasible, Orban used the LSP code to perform the first-ever, full-scale 2D Particle-In-Cell simulations of the entire laser-target interaction using fully realistic laser fields.

These simulations also included a sophisticated model for the pre-heating of the target from stray laser light ahead of the ultra-intense pulse developed by collaborators at the Flash Center for Computational Science at the University of Chicago.

"We were delighted to help Chris use the FLASH code to provide realistic initial conditions for his Particle-In-Cell simulations," said Don Lamb, director of the Flash Center. "This is an outstanding example of how two groups can collaborate to achieve a scientific result that neither could have achieved alone."

To conduct the simulations, the Ohio State researchers accessed OSC's flagship Oakley Cluster supercomputer system. The HP-built system features 8,300+ Intel Xeon cores and 128 NVIDIA Tesla GPUs. Oakley can achieve 88 teraflops, tech-speak for performing 88 trillion calculations per second, or, with acceleration from the NVIDIA GPUs, a total peak performance of 154 teraflops.

"The simulations pointed to the electric fields building up on the edge of the cone as the key to everything," said Orban. "The thicker the cone is, the further away the cone edge is from the laser, and as a result fewer energetic electrons are deflected forward, which is the crucial issue in making cone-guided Fast Ignition a viable approach."

With both the experiment and the simulations telling the same story, the evidence is compelling that the cone-guided route to Fast Ignition is an unlikely one. While other studies have come to similar conclusions, the group was the first to identify the plasma surrounding the cone as a severe hindrance. Thankfully, there are still many other ideas for successfully igniting the fusion pellet with current or soon-to-be-constructed laser facilities. Any future efforts to spark fusion reactions with these lasers using a two-stage fast-ignition approach must be mindful to consider the neutralizing effect of the free electrons in the dense plasma.

"We could not have completed this project without the Oakley Cluster," Orban noted. "It was the perfect combination of speed and RAM and availability for us. And thanks to the profiling I was able to do, the compute time for our production runs went from two weeks in November 2011 to three or four days as of February 2012."

"Energy and the environment is one of the primary focus areas of the center, and this research fits perfectly into that domain," said Brian Guilfoos, the client and technology support manager for OSC. "Many of our systems were designed and software packages selected to best support the type of computing required by investigators working in fields related to our focus areas."


Story Source:

The above story is based on materials provided by Ohio Supercomputer Center. Note: Materials may be edited for content and length.


Journal Reference:

  1. K. U. Akli, C. Orban, D. Schumacher, M. Storm, M. Fatenejad, D. Lamb, R. R. Freeman. Coupling of high-intensity laser light to fast electrons in cone-guided fast ignition. Physical Review E, 2012; 86 (6) DOI: 10.1103/PhysRevE.86.065402

Cite This Page:

Ohio Supercomputer Center. "Simulations uncover obstacle to harnessing laser-driven fusion: Under realistic conditions, hollow cones fail to guide energetic electrons to fuel." ScienceDaily. ScienceDaily, 26 March 2013. <www.sciencedaily.com/releases/2013/03/130326162340.htm>.
Ohio Supercomputer Center. (2013, March 26). Simulations uncover obstacle to harnessing laser-driven fusion: Under realistic conditions, hollow cones fail to guide energetic electrons to fuel. ScienceDaily. Retrieved July 30, 2014 from www.sciencedaily.com/releases/2013/03/130326162340.htm
Ohio Supercomputer Center. "Simulations uncover obstacle to harnessing laser-driven fusion: Under realistic conditions, hollow cones fail to guide energetic electrons to fuel." ScienceDaily. www.sciencedaily.com/releases/2013/03/130326162340.htm (accessed July 30, 2014).

Share This




More Matter & Energy News

Wednesday, July 30, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Britain Testing Driverless Cars on Roadways

Britain Testing Driverless Cars on Roadways

AP (July 30, 2014) British officials said on Wednesday that driverless cars will be tested on roads in as many as three cities in a trial program set to begin in January. Officials said the tests will last up to three years. (July 30) Video provided by AP
Powered by NewsLook.com
China's Drone King Says the Revolution Depends on Regulators

China's Drone King Says the Revolution Depends on Regulators

Reuters - Business Video Online (July 30, 2014) Comparing his current crop of drones to early personal computers, DJI founder Frank Wang says the industry is poised for a growth surge - assuming regulators in more markets clear it for takeoff. Jon Gordon reports. Video provided by Reuters
Powered by NewsLook.com
3Doodler Bring 3-D Printing to Your Hand

3Doodler Bring 3-D Printing to Your Hand

AP (July 30, 2014) 3-D printing is a cool technology, but it's not exactly a hands-on way to make things. Enter the 3Doodler: the pen that turns you into the 3-D printer. AP technology writer Peter Svensson takes a closer look. (July 30) Video provided by AP
Powered by NewsLook.com
Climate Change Could Cost Billions, According To White House

Climate Change Could Cost Billions, According To White House

Newsy (July 29, 2014) A report from the White House warns not curbing greenhouse gas emissions could cost the U.S. billions. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

    Technology News



      Save/Print:
      Share:

      Free Subscriptions


      Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

      Get Social & Mobile


      Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

      Have Feedback?


      Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
      Mobile: iPhone Android Web
      Follow: Facebook Twitter Google+
      Subscribe: RSS Feeds Email Newsletters
      Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins