Featured Research

from universities, journals, and other organizations

Rats' and bats' brains work differently on the move

Date:
April 18, 2013
Source:
University of Maryland
Summary:
A new study of brain rhythms in bats and rats challenges a widely-used model -- based on rodent studies -- of how animals navigate their environment. To get a clearer picture of processes in the mammal brain during spatial navigation, neuroscientists must study more species, say scientists involved in the study.

Flying animals, like this big brown bat in Prof. Cynthia Moss' laboratory, may navigate differently than ground-dwelling rodents. Comparative studies are needed as neuroscientists develop models of how the brain processes spatial information, Moss says.
Credit: Photo: Jessica Nelson

A new study of brain rhythms in bats and rats challenges a widely used model -- based on studies in rodents -- of how animals navigate their environment. To get a clearer picture of the processes at work in the mammal brain during spatial navigation, neuroscientists must closely study a broad range of animals, say the two University of Maryland College Park scientists involved in the study.

In the April 19, 2013 issue of Science, the University of Maryland researchers and two colleagues at Boston University reported significant differences between rats' and bats' brain rhythms in a part of the brain used in navigation.

The researchers focused on specialized cells that process spatial information in a region called the medial entorhinal cortex, a hub of neural networks for memory and navigation. Earlier experiments showed rats' brain cells in this area fire continuously in a rhythmic electrical signal called a theta wave when the animals are navigating through space. Some models of the brain treat theta waves as a key element of spatial navigation in all mammals, but this idea is based on rodent research, Moss said.

The Boston University-University of Maryland team tested for rhythmic electrical responses at the cellular level in bat and rat brain tissue. They found evidence for theta waves in the rat cells. But in the bat cells these waves were absent, said Moss, who has studied bats since the 1980s.

"This raises questions as to whether theta rhythms are actually doing what the spatial navigation theory proposes," said a co-author, UMD biology researcher Katrina MacLeod. "To understand brains, including ours, we really must study neural activity in a variety of animals."

Humans and other mammals share many common features of brain organization, and the differences in theta waves between bats and rats raises questions about how spatial information is represented in all brains.


Story Source:

The above story is based on materials provided by University of Maryland. Note: Materials may be edited for content and length.


Journal Reference:

  1. J. G. Heys, K. M. MacLeod, C. F. Moss, M. E. Hasselmo. Bat and Rat Neurons Differ in Theta-Frequency Resonance Despite Similar Coding of Space. Science, 2013; 340 (6130): 363 DOI: 10.1126/science.1233831

Cite This Page:

University of Maryland. "Rats' and bats' brains work differently on the move." ScienceDaily. ScienceDaily, 18 April 2013. <www.sciencedaily.com/releases/2013/04/130418142258.htm>.
University of Maryland. (2013, April 18). Rats' and bats' brains work differently on the move. ScienceDaily. Retrieved September 20, 2014 from www.sciencedaily.com/releases/2013/04/130418142258.htm
University of Maryland. "Rats' and bats' brains work differently on the move." ScienceDaily. www.sciencedaily.com/releases/2013/04/130418142258.htm (accessed September 20, 2014).

Share This



More Mind & Brain News

Saturday, September 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Could Grief Affect The Immune Systems Of Senior Citizens?

Could Grief Affect The Immune Systems Of Senior Citizens?

Newsy (Sep. 19, 2014) The study found elderly people are much more likely to become susceptible to infection than younger adults going though a similar situation. Video provided by Newsy
Powered by NewsLook.com
Food Addiction Might Be Caused By PTSD

Food Addiction Might Be Caused By PTSD

Newsy (Sep. 18, 2014) New research shows that women who suffer from PTSD are three times more likely to develop a food addiction. Video provided by Newsy
Powered by NewsLook.com
Corporal Punishment on Decline, Debate Renews

Corporal Punishment on Decline, Debate Renews

AP (Sep. 16, 2014) Corporal punishment in the United States is on the decline, but there is renewed debate over its use after Minnesota Vikings running back Adrian Peterson was charged with child abuse. (Sept. 16) Video provided by AP
Powered by NewsLook.com
FDA Eyes Skin Shocks Used at Mass. School

FDA Eyes Skin Shocks Used at Mass. School

AP (Sep. 15, 2014) The FDA is considering whether to ban devices used by the Judge Rotenberg Educational Center in Canton, Massachusetts, the only place in the country known to use electrical skin shocks as aversive conditioning for aggressive patients. (Sept. 15) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins