Featured Research

from universities, journals, and other organizations

Injectable nano-network controls blood sugar in diabetics for days at a time

Date:
May 3, 2013
Source:
North Carolina State University
Summary:
In a promising development for diabetes treatment, researchers have developed a network of nanoscale particles that can be injected into the body and release insulin when blood-sugar levels rise, maintaining normal blood sugar levels for more than a week in animal-based laboratory tests.

The nano-network releases insulin in response to changes in blood sugar.
Credit: Image courtesy of North Carolina State University

In a promising development for diabetes treatment, researchers have developed a network of nanoscale particles that can be injected into the body and release insulin when blood-sugar levels rise, maintaining normal blood sugar levels for more than a week in animal-based laboratory tests. The work was done by researchers at North Carolina State University, the University of North Carolina at Chapel Hill, the Massachusetts Institute of Technology and Children's Hospital Boston.

"We've created a 'smart' system that is injected into the body and responds to changes in blood sugar by releasing insulin, effectively controlling blood-sugar levels," says Dr. Zhen Gu, lead author of a paper describing the work and an assistant professor in the joint biomedical engineering program at NC State and UNC Chapel Hill. "We've tested the technology in mice, and one injection was able to maintain blood sugar levels in the normal range for up to 10 days."

When a patient has type 1 diabetes, his or her body does not produce sufficient insulin, a hormone that transports glucose -- or blood sugar -- from the bloodstream into the body's cells. This can cause a host of health effects. Currently, diabetes patients must take frequent blood samples to monitor their blood-sugar levels and inject insulin as needed to ensure their blood sugar levels are in the "normal" range. However, these injections can be painful, and it can be difficult to determine the accurate dose level of insulin. Administering too much or too little insulin poses its own health risks.

The new, injectable nano-network is composed of a mixture containing nanoparticles with a solid core of insulin, modified dextran and glucose oxidase enzymes. When the enzymes are exposed to high glucose levels they effectively convert glucose into gluconic acid, which breaks down the modified dextran and releases the insulin. The insulin then brings the glucose levels under control. The gluconic acid and dextran are fully biocompatible and dissolve in the body.

Each of these nanoparticle cores is given either a positively charged or negatively charged biocompatible coating. The positively charged coatings are made of chitosan (a material normally found in shrimp shells), while the negatively charged coatings are made of alginate (a material normally found in seaweed).

When the solution of coated nanoparticles is mixed together, the positively and negatively charged coatings are attracted to each other to form a "nano-network." Once injected into the subcutaneous layer of the skin, the nano-network holds the nanoparticles together and prevents them from dispersing throughout the body. Both the nano-network and the coatings are porous, allowing blood -- and blood sugar -- to reach the nanoparticle cores.

"This technology effectively creates a 'closed-loop' system that mimics the activity of the pancreas in a healthy person, releasing insulin in response to glucose level changes," Gu says. "This has the potential to improve the health and quality of life of diabetes patients."

Gu's research team is currently in discussions to move the technology into clinical trials for use in humans.


Story Source:

The above story is based on materials provided by North Carolina State University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Zhen Gu, Alex A. Aimetti, Qun Wang, Tram T. Dang, Yunlong Zhang, Omid Veiseh, Hao Cheng, Robert S. Langer, Daniel G. Anderson. Injectable Nano-Network for Glucose-Mediated Insulin Delivery. ACS Nano, 2013; 130502161653001 DOI: 10.1021/nn400630x

Cite This Page:

North Carolina State University. "Injectable nano-network controls blood sugar in diabetics for days at a time." ScienceDaily. ScienceDaily, 3 May 2013. <www.sciencedaily.com/releases/2013/05/130503114716.htm>.
North Carolina State University. (2013, May 3). Injectable nano-network controls blood sugar in diabetics for days at a time. ScienceDaily. Retrieved April 24, 2014 from www.sciencedaily.com/releases/2013/05/130503114716.htm
North Carolina State University. "Injectable nano-network controls blood sugar in diabetics for days at a time." ScienceDaily. www.sciencedaily.com/releases/2013/05/130503114716.htm (accessed April 24, 2014).

Share This



More Health & Medicine News

Thursday, April 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Big Pharma Braces for M&A Wave

Big Pharma Braces for M&A Wave

Reuters - Business Video Online (Apr. 22, 2014) Big pharma on the move as Novartis boss, Joe Jimenez, tells Reuters about plans to transform his company via an asset exchange with GSK, and Astra Zeneca shares surge on speculation that Pfizer is looking for a takeover. Joanna Partridge reports. Video provided by Reuters
Powered by NewsLook.com
Study Says Most Crime Not Linked To Mental Illness

Study Says Most Crime Not Linked To Mental Illness

Newsy (Apr. 22, 2014) A new study finds most crimes committed by people with mental illness are not caused by symptoms of their illness or disorder. Video provided by Newsy
Powered by NewsLook.com
Hagel Gets Preview of New High-Tech Projects

Hagel Gets Preview of New High-Tech Projects

AP (Apr. 22, 2014) Defense Secretary Chuck Hagel is given hands-on demonstrations Tuesday of some of the newest research from DARPA _ the military's Defense Advanced Research Projects Agency program. (April 22) Video provided by AP
Powered by NewsLook.com
How Smaller Plates And Cutlery Could Make You Feel Fuller

How Smaller Plates And Cutlery Could Make You Feel Fuller

Newsy (Apr. 22, 2014) NBC's "Today" conducted an experiment to see if changing the size of plates and utensils affects the amount individuals eat. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins