Featured Research

from universities, journals, and other organizations

New catalyst replaces platinum for electric-automobiles

Date:
July 3, 2013
Source:
Ulsan National Institute of Science and Technology(UNIST)
Summary:
Scientists have developed a novel bio-inspired composite electrocatalyst outperforming platinum.

A diagram of the synthesis of the new nanotube-based catalyst.
Credit: Image courtesy of Ulsan National Institute of Science and Technology(UNIST)

Affordable and scalable process of a carbon nanotube-based catalyst outperforming platinum for electric-automobiles

Related Articles


Korean researchers from Ulsan National Institute of Science and Technology (UNIST), S. Korea, developed a novel bio-inspired composite electrocatalyst outperforming platinum.

This research work was published on June 25, in the journal Nature Communications. 

The research team from UNIST, S. Korea, developed an inexpensive and scalable bio-inspired composite electrocatalyst, iron phthalocyanine with an axial ligand anchored on single-walled carbon nanotubes, demonstrating a higher electrocatalytic activity for oxygen reduction than the state-of-the-art Pt/C catalysts as well as an exceptional durability during cycling in an alkaline media.

Electrocatalysts for oxygen reduction are critical components that may dramatically enhance the performance of fuel cells and metal-air batteries, which are perceived to be the power for future electric vehicles.

Currently Pt and its alloy are known as the most efficient catalysts for activation of the oxygen reduction reaction. However, the application of them is limited due to their high costs and scarce reserves.

Scientists worldwide are speculating to find better catalysts which outperform platinum catalysts with low cost and simple production processes.

The UNIST research team led by Prof. Jaephil Cho, dean of the Interdisciplinary School of Green Energy of UNIST, demonstrated a new strategy to rationally design inexpensive and durable electrochemical oxygen reduction catalysts for metal-air batteries and fuel cells.

The research team designed a new class of ORR catalysts using pyridine-functionalized carbon nanotubes (CNTs) to anchor FePc molecules and provide the axial ligand for the iron centre. At the same time, the CNTs provide an easy pathway for fast electron transfer from the current collector to the ORR active sites.

The resulting material, bio-inspired FePc-Py-CNTs catalyst has shown outstanding durability and electrocatalytic activity for ORR in an alkaline media, offering better performance than a commercial Pt/C catalyst. Compared to other unpyrilysed metal macrocycles catalysts, this bio inspired FePc-Py-CNTs catalyst has achieved a much longer cycle life , reaching more than 1,000 cycles in a durability test.

"I believe the FePc-Py-CNTs catalysts is a technologically promising candidate for practical applications in metal-air batteries and alkaline fuel cells," said Prof. Cho. "The origin of the enhanced performance for this bio-inspired catalysts in aromatic macrocycle, provides important insight into rational design of metal macrocycles catalysts for other applications such as solar harvesting and catalysts for other redox reactions."

The fellow researchers include Ruiguo Cao, Ranjit Thapa, Hyejung Kim, Xioadong Xu, and Prof. Noejung Park from UNIST and researchers from Pohang Accelerator Laboratory (PAL), Loa Alamos National Laboratory and Georgia Institute of Technology.

The research was supported by the Converging Research Centre Program through the Ministry of Education, Science and Technology (MEST), Korea. The Ministry of Science, ICT and Future Planning (MSIP), Korea is also acknowledged.


Story Source:

The above story is based on materials provided by Ulsan National Institute of Science and Technology(UNIST). Note: Materials may be edited for content and length.


Journal Reference:

  1. Ruiguo Cao, Ranjit Thapa, Hyejung Kim, Xiaodong Xu, Min Gyu Kim, Qing Li, Noejung Park, Meilin Liu, Jaephil Cho. Promotion of oxygen reduction by a bio-inspired tethered iron phthalocyanine carbon nanotube-based catalyst. Nature Communications, 2013; 4 DOI: 10.1038/ncomms3076

Cite This Page:

Ulsan National Institute of Science and Technology(UNIST). "New catalyst replaces platinum for electric-automobiles." ScienceDaily. ScienceDaily, 3 July 2013. <www.sciencedaily.com/releases/2013/07/130703101438.htm>.
Ulsan National Institute of Science and Technology(UNIST). (2013, July 3). New catalyst replaces platinum for electric-automobiles. ScienceDaily. Retrieved April 24, 2015 from www.sciencedaily.com/releases/2013/07/130703101438.htm
Ulsan National Institute of Science and Technology(UNIST). "New catalyst replaces platinum for electric-automobiles." ScienceDaily. www.sciencedaily.com/releases/2013/07/130703101438.htm (accessed April 24, 2015).

Share This


More From ScienceDaily



More Matter & Energy News

Friday, April 24, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

3D Food Printing: The Meal of the Future?

3D Food Printing: The Meal of the Future?

AP (Apr. 23, 2015) — Developers of 3D food printing hope the culinary technology will revolutionize the way we cook and eat. (April 23) Video provided by AP
Powered by NewsLook.com
'Safest Bike Ever' Devised by British Entrepreneur

'Safest Bike Ever' Devised by British Entrepreneur

Reuters - Innovations Video Online (Apr. 23, 2015) — A British inventor says his Babel bike is the safest bicycle ever produced. Crispin Sinclair - son of famous British inventor Sir Clive Sinclair - hopes the bike&apos;s safety cage, double seatbelt, and host of other measures will inspire non-cyclists to get in the saddle. Jim Drury went to see it in action. Video provided by Reuters
Powered by NewsLook.com
First Successful Aerial Refueling of a Drone

First Successful Aerial Refueling of a Drone

Reuters - Innovations Video Online (Apr. 23, 2015) — The bat-wing U.S. Navy drone that became the first autonomous airplane to take off and land on an aircraft carrier accomplished yet another milestone on Wednesday, becoming the first unmanned aircraft to undergo aerial refueling. Ben Gruber reports. Video provided by Reuters
Powered by NewsLook.com
Human or Robot You Decide

Human or Robot You Decide

Reuters - Business Video Online (Apr. 23, 2015) — An ultra-realistic humanoid robot called &apos;Han&apos; recognises and interprets people&apos;s facial expressions and can even hold simple conversations. Developers Hanson Robotics hope androids like Han could have uses in hospitality and health care industries where face-to-face communication is vital. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins