Featured Research

from universities, journals, and other organizations

Internal tagging technique for 3-D-printed objects demonstrated

Date:
July 22, 2013
Source:
Carnegie Mellon University
Summary:
The age of 3-D printing, when every object so created can be personalized, will increase the need for tags to keep track of everything. Happily, the same 3-D printing process used to produce an object can simultaneously generate an internal, invisible tag, say scientists. These internal tags, which the researchers have dubbed InfraStructs, can be read with an imaging system using terahertz radiation, which can safely penetrate many common materials.

The age of 3D printing, when every object so created can be personalized, will increase the need for tags to keep track of everything. Happily, the same 3D printing process used to produce an object can simultaneously generate an internal, invisible tag, say scientists at Carnegie Mellon University and Microsoft Research.

These internal tags, which the researchers have dubbed InfraStructs, can be read with an imaging system using terahertz (THz) radiation, which can safely penetrate many common materials. In proof-of-concept experiments, Karl Willis, a recent Ph.D. graduate in computational design at Carnegie Mellon, and Andy Wilson, a principal researcher at Microsoft Research, have demonstrated several possible tag designs and the THz imaging and data processing steps necessary to read them.

The tags themselves come at no extra cost, Willis said, but THz imaging, still in its infancy, can be pricey. As this imaging technology matures and becomes more affordable, however, InfraStructs could be used for a number of applications beyond keeping track of inventory or making point-of-sale transactions.

For instance, they could help mobile robots recognize or differentiate between things. They might encode information into custom accessories used in game systems. Or, they might enable new tabletop computing scenarios in which objects can be sensed regardless of whether they are stacked, buried or inserted inside other objects.

Willis and Wilson will present their findings July 25 at SIGGRAPH 2013, the International Conference on Computer Graphics and Interactive Techniques, in Anaheim, Calif.

Unlike conventional manufacturing, every single thing produced with digital fabrication techniques, such as 3D printing and laser cutting, can differ from the next, even in subtle ways. "You probably don't want to have visible barcodes or QR codes on every object you make," Willis said. Inserting a radio frequency identification (RFID) tag into each component would be a possibility, he acknowledged, but for now that would require interrupting the normal 3D printing process.

InfraStructs, by contrast, can be made with the same layer-by-layer process used for producing the object. In some cases, information can be encoded by positioning bubbles or voids inside the object; those voids reflect THz radiation. In other cases, materials that are reflective of THz radiation might be used to encode the information or create images inside the object.

"The ability to embed 3D patterns gives designers new opportunities in creating objects that are meant to be sensed and tracked," Wilson said. "One idea is to embed a code just under the surface of the object, so that a THz beam can recover its position on the surface, wherever it strikes the object."

THz radiation falls between microwaves and infrared light on the electromagnetic spectrum. It can penetrate many common plastics, papers and textiles but, unlike X-rays, does not harm biological tissues. THz imaging has yet to be fully commercialized. NASA famously has used it for inspecting the protective tiles on the space shuttle, detecting the same sort of voids Willis and Wilson have now used to encode information with InfraStructs.

Willis' work on InfraStructs occurred while he was an intern at Microsoft Research. Additional research on materials, fabrication processes and imaging techniques will be necessary if the tags are to be widely adopted. InfraStructs aim to take advantage of trends toward high-speed electronics at THz frequencies and the rapidly growing capabilities of digital fabrication.

For more information, visit the project website at http://www.karlddwillis.com/projects/infrastructs/ or the Microsoft Research Blog.


Story Source:

The above story is based on materials provided by Carnegie Mellon University. Note: Materials may be edited for content and length.


Cite This Page:

Carnegie Mellon University. "Internal tagging technique for 3-D-printed objects demonstrated." ScienceDaily. ScienceDaily, 22 July 2013. <www.sciencedaily.com/releases/2013/07/130722123224.htm>.
Carnegie Mellon University. (2013, July 22). Internal tagging technique for 3-D-printed objects demonstrated. ScienceDaily. Retrieved August 30, 2014 from www.sciencedaily.com/releases/2013/07/130722123224.htm
Carnegie Mellon University. "Internal tagging technique for 3-D-printed objects demonstrated." ScienceDaily. www.sciencedaily.com/releases/2013/07/130722123224.htm (accessed August 30, 2014).

Share This




More Matter & Energy News

Saturday, August 30, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Australian Airlines Relax Phone Ban Too

Australian Airlines Relax Phone Ban Too

Reuters - Business Video Online (Aug. 26, 2014) Qantas and Virgin say passengers can use their smartphones and tablets throughout flights after a regulator relaxed a ban on electronic devices during take-off and landing. As Hayley Platt reports the move comes as the two domestic rivals are expected to post annual net losses later this week. Video provided by Reuters
Powered by NewsLook.com
Hurricane Marie Brings Big Waves to California Coast

Hurricane Marie Brings Big Waves to California Coast

Reuters - US Online Video (Aug. 26, 2014) Huge waves generated by Hurricane Marie hit the Southern California coast. Rough Cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com
Chinese Researchers Might Be Creating Supersonic Submarine

Chinese Researchers Might Be Creating Supersonic Submarine

Newsy (Aug. 26, 2014) Chinese researchers have expanded on Cold War-era tech and are closer to building a submarine that could reach the speed of sound. Video provided by Newsy
Powered by NewsLook.com
Breakingviews: India Coal Strained by Supreme Court Ruling

Breakingviews: India Coal Strained by Supreme Court Ruling

Reuters - Business Video Online (Aug. 26, 2014) An acute coal shortage is likely to be aggravated as India's supreme court declared government coal allocations illegal, says Breakingviews' Peter Thal Larsen. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins