Featured Research

from universities, journals, and other organizations

How brain cells change their tune

Date:
July 25, 2013
Source:
NIH/National Institute of Neurological Disorders and Stroke
Summary:
Researchers may have answered a long-standing, fundamental question about how brain cells communicate by showing that brief bursts of chemical energy coming from rapidly moving power plants, called mitochondria, may tune synaptic transmission.

NIH researchers use advanced microscopic techniques to watch mitochondria dance around and tune nerve cell voices. This kymograph describes their dynamic steps.
Credit: Courtesy of the Sheng lab, NINDS, Bethesda, Md.

Brain cells talk to each other in a variety of tones. Sometimes they speak loudly but other times struggle to be heard. For many years scientists have asked why and how brain cells change tones so frequently. Today National Institutes of Health researchers showed that brief bursts of chemical energy coming from rapidly moving power plants, called mitochondria, may tune brain cell communication.

"We are very excited about the findings," said Zu-Hang Sheng, Ph.D., a senior principal investigator and the chief of the Synaptic Functions Section at the NIH's National Institute of Neurological Disorders and Stroke (NINDS). "We may have answered a long-standing, fundamental question about how brain cells communicate with each other in a variety of voice tones."

The network of nerve cells throughout the body typically controls thoughts, movements and senses by sending thousands of neurotransmitters, or brain chemicals, at communication points made between the cells called synapses. Neurotransmitters are sent from tiny protrusions found on nerve cells, called presynaptic boutons. Boutons are aligned, like beads on a string, on long, thin structures called axons. They help control the strength of the signals sent by regulating the amount and manner that nerve cells release transmitters.

Mitochondria are known as the cell's power plant because they use oxygen to convert many of the chemicals cells use as food into adenosine triphosphate (ATP), the main energy that powers cells. This energy is essential for nerve cell survival and communication. Previous studies showed that mitochondria can rapidly move along axons, dancing from one bouton to another.

In this study, published in Cell Reports, Dr. Sheng and his colleagues show that these moving power plants may control the strength of the signals sent from boutons.

"This is the first demonstration that links the movement of mitochondria along axons to a wide variety of nerve cell signals sent during synaptic transmission," said Dr. Sheng.

The researchers used advanced microscopic techniques to watch mitochondria move among boutons while they released neurotransmitters. They found that boutons sent consistent signals when mitochondria were nearby.

"It's as if the presence of mitochondria causes a bouton to talk in a monotone voice," said Tao Sun, Ph.D., a researcher in Dr. Sheng's laboratory and the first author of the study.

Surprisingly, when the mitochondria were missing or moving away from boutons, the signal strength fluctuated. The results suggested that the presence of stationary power plants at synapses controls the stability of the nerve signal strength.

To test this idea further, the researchers manipulated mitochondrial movement in axons by changing levels of syntaphilin, a protein that helps anchor mitochondria to the nerve cell's skeleton found inside axons. Removal of syntaphilin resulted in faster moving mitochondria and electrical recordings from these neurons showed that the signals they sent fluctuated greatly. Conversely, elevating syntaphilin levels in nerve cells arrested mitochondrial movement and resulted in boutons that spoke in monotones by sending signals with the same strength.

"It's known that about one third of all mitochondria in axons move. Our results show that brain cell communication is tightly controlled by highly dynamic events occurring at numerous tiny cell-to-cell connection points," said Dr. Sheng.

In separate experiments the researchers watched ATP energy levels in these tiny boutons as they sent nerve messages.

"The levels fluctuated more in boutons that did not have mitochondria nearby," said Dr. Sun.

The researchers also found that blocking ATP production in mitochondria with the drug oligomycin reduced the size of the signals boutons sent even if a mitochondrial power plant was nearby.

"Our results suggest that local ATP production by nearby mitochondria is critical for consistent neurotransmitter release," said Dr. Sheng. "It appears that variability in synaptic transmission is controlled by rapidly moving mitochondria which provide brief bursts of energy to the boutons they pass through."

Problems with mitochondrial energy production and movement throughout nerve cells have been implicated in Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and other major neurodegenerative disorders. Dr. Sheng thinks these results will ultimately help scientists understand how these problems can lead to disorders in brain cell communication.

"Our findings reveal the cellular mechanisms that tune brain communication by regulating mitochondrial mobility, thus advancing our understanding of human neurological disorders," said Dr. Sheng.


Story Source:

The above story is based on materials provided by NIH/National Institute of Neurological Disorders and Stroke. Note: Materials may be edited for content and length.


Journal Reference:

  1. Tao Sun, Haifa Qiao, Ping-Yue Pan, Yanmin Chen, Zu-Hang Sheng. Motile Axonal Mitochondria Contribute to the Variability of Presynaptic Strength. Cell Reports, 2013; DOI: 10.1016/j.celrep.2013.06.040

Cite This Page:

NIH/National Institute of Neurological Disorders and Stroke. "How brain cells change their tune." ScienceDaily. ScienceDaily, 25 July 2013. <www.sciencedaily.com/releases/2013/07/130725125312.htm>.
NIH/National Institute of Neurological Disorders and Stroke. (2013, July 25). How brain cells change their tune. ScienceDaily. Retrieved September 23, 2014 from www.sciencedaily.com/releases/2013/07/130725125312.htm
NIH/National Institute of Neurological Disorders and Stroke. "How brain cells change their tune." ScienceDaily. www.sciencedaily.com/releases/2013/07/130725125312.htm (accessed September 23, 2014).

Share This



More Health & Medicine News

Tuesday, September 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Liberia Pleads for Help to Fight Ebola

Liberia Pleads for Help to Fight Ebola

AP (Sep. 22, 2014) Liberia's finance minister is urging the international community to quickly follow through on pledges of cash to battle Ebola. Bodies are piling up in the capital Monrovia as the nation awaits more help. (Sept. 22) Video provided by AP
Powered by NewsLook.com
Ebola Doctor Says Border Controls Critical

Ebola Doctor Says Border Controls Critical

AP (Sep. 22, 2014) A Florida doctor who helped fight the expanding Ebola outbreak in West Africa says the disease can be stopped, but only if nations quickly step up their response and make border control a priority. (Sept. 22) Video provided by AP
Powered by NewsLook.com
Global Ebola Aid Increasing But Critics Say It's Late

Global Ebola Aid Increasing But Critics Say It's Late

Newsy (Sep. 21, 2014) More than 100 tons of medical supplies were sent to West Africa on Saturday, but aid workers say the global response is still sluggish. Video provided by Newsy
Powered by NewsLook.com
Sierra Leone in Lockdown to Control Ebola

Sierra Leone in Lockdown to Control Ebola

AP (Sep. 21, 2014) Sierra Leone residents remained in lockdown on Saturday as part of a massive effort to confine millions of people to their homes in a bid to stem the biggest Ebola outbreak in history. (Sept. 20) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins