Featured Research

from universities, journals, and other organizations

Scientists discover surprising importance of 'I Love Q' for understanding neutron stars

Date:
July 25, 2013
Source:
Montana State University
Summary:
Astrophysicists have discovered why scientists can learn a tremendous amount about neutron stars and quark stars without knowing the details of their internal structure.

Scientists can learn a tremendous amount about neutron stars and quark stars without understanding their internal structure in detail, according to two Montana State University scientists who published their findings in the July 26 issue of Science.

"The stars could be the softest or the hardest in their kind, and it wouldn't matter," said Nicolas Yunes, assistant professor in MSU's Department of Physics.

The reason -- discovered by Yunes and postdoctoral scholar Kent Yagi -- is almost universal relations among three intrinsic properties of these highly compressed stars. These relations will allow astrophysicists to learn about the shape and degree of deformation of these stars without knowing the details of their internal structure.

These relations -- described in Yunes and Yagi's paper titled "I Love Q" -- are realized among the moment of inertia ("I"), the "Love number" and the quadrupole moment ("Q").

The first quantity describes how fast a star can rotate. The larger the number, the slower the spin rate.

"Think of twirling ice skaters," Yagi said. "If they bring their arms close to their bodies, the skaters' moment of inertia decreases, and so they spin faster."

The Love number relates to the deformability of a star when squished. The larger the number, the more deformed the star is. The third quantity, "Q," refers to the changing shape of a star.

A measurement of any one of these three quantities would allow astrophysicist to infer the other two to amazing precision without actually measuring them, according to the MSU researchers.

"It doesn't matter if the star is made of different proportions of neutrons, quarks and other particles. In the end, how much the star can be squeezed will be a direct function of its moment of inertia," Yagi said.

Yunes and Yagi used mathematical equations and computer models to discover that I, Love and Q satisfy these universal relations.

This is the first time that Yunes and Yagi have published their work in "Science," the world's leading journal of scientific research, global news and commentary. The weekly publication is read by an estimated 1 million readers. It is the academic journal of the American Association for the Advancement of Science.

"Getting a paper accepted into 'Science' is very difficult," Yunes said. "It's a great honor to be accepted. This encourages us to continue working hard to make new, important discoveries."

Neutron stars and quark stars are extremely compact. They contain an enormous amount of mass in a tiny radius. Because of that, they are so dense that they exert an insanely strong gravitational pull, Yunes said.

"Just imagine a ball the size of the sun being squeezed until it's the size of Bozeman," he said. "All the gravity of the sun, but amplified by factors of thousands."

Astrophysicists believe that these stars produce waves that vibrate through the universe, as the stars spiral into each other and collide. The scientists predict that they will be able to detect these "gravitational waves" by the end of this decade. If they are successful, they will have a whole new way of understanding the universe.

"To make a simple analogy, these waves are like the soundtrack to the universe, and their detection will be like transitioning from mute pictures to modern cinema," Yunes has said in the past.

Yunes and Yagi believe that these I-Love-Q relations they have found will aid in the gravitational wave effort.

"For instance, this universal relation could be used to test Einstein's Theory of General Relativity without contamination due to our ignorance of their internal structure," Yunes said. "You could also use these relations to tell whether what you have observed is a neutron star or a strange quark star."

Not understanding the internal structure of neutron stars has presented a major challenge to certain astrophysical studies, but the "I Love Q relations show that you can proceed without that knowledge," Yunes said.


Story Source:

The above story is based on materials provided by Montana State University. Note: Materials may be edited for content and length.


Journal Reference:

  1. K. Yagi, N. Yunes. I-Love-Q: Unexpected Universal Relations for Neutron Stars and Quark Stars. Science, 2013; 341 (6144): 365 DOI: 10.1126/science.1236462

Cite This Page:

Montana State University. "Scientists discover surprising importance of 'I Love Q' for understanding neutron stars." ScienceDaily. ScienceDaily, 25 July 2013. <www.sciencedaily.com/releases/2013/07/130725141713.htm>.
Montana State University. (2013, July 25). Scientists discover surprising importance of 'I Love Q' for understanding neutron stars. ScienceDaily. Retrieved July 25, 2014 from www.sciencedaily.com/releases/2013/07/130725141713.htm
Montana State University. "Scientists discover surprising importance of 'I Love Q' for understanding neutron stars." ScienceDaily. www.sciencedaily.com/releases/2013/07/130725141713.htm (accessed July 25, 2014).

Share This




More Space & Time News

Friday, July 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Raw: ISS Cargo Ship Launches in Kazakhstan

Raw: ISS Cargo Ship Launches in Kazakhstan

AP (July 23, 2014) The Progress 56 cargo ship launched from the Baikonur Cosmodrome in Kazakhstan Wednesday. NASA says it will deliver cargo and crew supplies to the International Space Station. (July 23) Video provided by AP
Powered by NewsLook.com
Raw: Cargo Craft Undocks from Space Station

Raw: Cargo Craft Undocks from Space Station

AP (July 22, 2014) A Russian Soyuz cargo-carrying spacecraft undocked from the International Space Station on Monday. The craft is due to undergo about ten days of engineering tests before it burns up in the Earth's atmosphere. (July 22) Video provided by AP
Powered by NewsLook.com
NASA Ceremony Honors Moon Walker Neil Armstrong

NASA Ceremony Honors Moon Walker Neil Armstrong

AP (July 21, 2014) NASA honored one of its most famous astronauts Monday by renaming a historic building at the Kennedy Space Center in Florida. It now bears the name of Neil Armstrong, the first man to walk on the moon. (July 21) Video provided by AP
Powered by NewsLook.com
Neil Armstrong's Post-Apollo 11 Life

Neil Armstrong's Post-Apollo 11 Life

Newsy (July 19, 2014) Neil Armstrong gained international fame after becoming the first man to walk on the moon in 1969. But what was his life like after the historic trip? Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

    Health News

      Environment News

        Technology News



          Save/Print:
          Share:

          Free Subscriptions


          Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

          Get Social & Mobile


          Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

          Have Feedback?


          Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
          Mobile: iPhone Android Web
          Follow: Facebook Twitter Google+
          Subscribe: RSS Feeds Email Newsletters
          Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins