Featured Research

from universities, journals, and other organizations

Motor control development continues longer than previously believed

Date:
September 18, 2013
Source:
University of Southern California
Summary:
Research into fine motor control in children shows that developmental improvements continue much later than previously believed, and aren't isolated to the brain.

Francisco Valero-Cuevas invented a tool that allows for more precise measurement of fine motor control in humans. - See more at: http://news.usc.edu/#!/article/55298/motor-control-development-may-extend-into-late-adolescence-study-finds/
Credit: Evan-Amos

The development of fine motor control -- the ability to use your fingertips to manipulate objects -- takes longer than previously believed, and isn't entirely the result of brain development, according to a pair of complementary studies.

Related Articles


The research opens up the potential to use therapy to continue improving the motor control skills of children suffering from neurodevelopmental disorders such as cerebral palsy, a blanket term for central motor disorders that affects about 764,000 children and adults nationwide

"These findings show that it's not only possible but critical to continue or begin physical therapy in adolescence," said Francisco Valero-Cuevas, corresponding author of two studies on the matter -- one appearing in the Journal of Neurophysiology and the other in the Journal of Neuroscience.

"We find we likely do not have a narrow window of opportunity in early childhood to improve manipulation skills, as previously believed, but rather developmental plasticity lasts much longer and provides opportunity throughout adolescence" he said. "This complements similarly exciting findings showing brain plasticity in adulthood and old age."

Researchers had previously been able to detect improvements in fine motor control of the hand only until around age eight to 10; however, Valero-Cuevas -- a professor of biomedical engineering and of biokinesiology and physical therapy -- invented a tool that allows for more precise measurement of fine motor control.

The tool is simple -- springs of varying stiffness and length set between plastic pads which he has patented. Motor skill is then determined by individual's ability to compress the increasingly awkward spring devices. Sudarshan Dayanidhi, during his PhD studies at USC with Valero-Cuevas, developed and applied clinically useful versions of this technology with great success.

With this new tool, and in collaboration with Åsa Hedberg and Hans Forssberg of the Astrid Lindgren Children's Hospital in Stockholm, they tested 130 children with typical development between four and 16 years of age, and demonstrated that even the 16-year-olds were continuing to hone their fine motor skills. Their findings will appear in the Journal of Neurophysiology on Oct. 1.

To further this study, Dayanidhi and Valero-Cuevas joined forces with Assistant Professor of biokinesiology and physical therapy Jason Kutch (also of USC), to explore if this longer developmental timeline for dexterity was tied not just to brain maturation, but also to muscular development.

It has long been thought that improved dexterity involved only brain development and muscle growth- where muscles only got bigger and stronger, but did not add to dexterous skills since they are performed at low forces. The research by Dayanidhi, Kutch and Valero-Cuevas indicates otherwise.

"Combining our metrics of dexterity from Dayanidhi's PhD work, with novel and noninvasive measures of muscle contraction time developed by Prof. Kutch, we were able to show a previously unknown strong association between gains in dexterity with improvement in low force muscle contraction time," said Valero-Cuevas.

This second facet of the research showing how both dexterity and muscle function improve in children will appear in the Journal of Neuroscience on Sept. 18.


Story Source:

The above story is based on materials provided by University of Southern California. Note: Materials may be edited for content and length.


Journal Reference:

  1. S. Dayanidhi, J. J. Kutch, F. J. Valero-Cuevas. Decrease in Muscle Contraction Time Complements Neural Maturation in the Development of Dynamic Manipulation. Journal of Neuroscience, 2013; 33 (38): 15050 DOI: 10.1523/JNEUROSCI.1968-13.2013

Cite This Page:

University of Southern California. "Motor control development continues longer than previously believed." ScienceDaily. ScienceDaily, 18 September 2013. <www.sciencedaily.com/releases/2013/09/130918130856.htm>.
University of Southern California. (2013, September 18). Motor control development continues longer than previously believed. ScienceDaily. Retrieved October 24, 2014 from www.sciencedaily.com/releases/2013/09/130918130856.htm
University of Southern California. "Motor control development continues longer than previously believed." ScienceDaily. www.sciencedaily.com/releases/2013/09/130918130856.htm (accessed October 24, 2014).

Share This



More Mind & Brain News

Friday, October 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Academic Scandal Shocks UNC

Academic Scandal Shocks UNC

AP (Oct. 23, 2014) — A scandal involving bogus classes and inflated grades at the University of North Carolina was bigger than previously reported, a new investigation found. (Oct. 23) Video provided by AP
Powered by NewsLook.com
Working Mother Getaway: Beaches Turks & Caicos

Working Mother Getaway: Beaches Turks & Caicos

Working Mother (Oct. 22, 2014) — Feast your eyes on this gorgeous family-friendly resort. Video provided by Working Mother
Powered by NewsLook.com
What Your Favorite Color Says About You

What Your Favorite Color Says About You

Buzz60 (Oct. 22, 2014) — We all have one color we love to wear, and believe it or not, your color preference may reveal some of your character traits. In celebration of National Color Day, Krystin Goodwin (@kyrstingoodwin) highlights what your favorite colors may say about you. Video provided by Buzz60
Powered by NewsLook.com
First-Of-Its-Kind Treatment Gives Man Ability To Walk Again

First-Of-Its-Kind Treatment Gives Man Ability To Walk Again

Newsy (Oct. 21, 2014) — A medical team has for the first time given a man the ability to walk again after transplanting cells from his brain onto his severed spinal cord. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins