Featured Research

from universities, journals, and other organizations

Researchers successfully test model for implant device reactions

Date:
September 24, 2013
Source:
University of Texas at Arlington
Summary:
A team of researchers has used mathematical modeling to develop a computer simulation they hope will one day improve the treatment of dangerous reactions to medical implants such as stents, catheters and artificial joints. Results from their computational model of foreign-body reactions to implants were consistent with biological models in lab tests.

A team from the University of Texas at Arlington has used mathematical modeling to develop a computer simulation they hope will one day improve the treatment of dangerous reactions to medical implants such as stents, catheters and artificial joints.

Liping Tang, professor of bioengineering in the UT Arlington College of Engineering, and Jianzhong Su, chairman and professor in the UT Arlington College of Science's mathematics department, are working together on a way to predict foreign-body reactions in medical settings.

The work resulted from a National Institutes of Health-funded collaboration by research groups headed by Liping Tang, professor of bioengineering in the UT Arlington College of Engineering, and Jianzhong Su, chairman and professor in the UT Arlington College of Science's mathematics department.

Results from their computational model of foreign-body reactions to implants were consistent with biological models in lab tests. A new paper describing the results has been accepted for publication in the Journal of Immunological Methods.

"Our efforts have transformed complex and dynamic biological interactions and pathways into a simplified mathematical formula," said Tang. "This model will allow us to improve the biocompatibility of medical devices and identify the timing and dosages of treatments when reactions occur."

Other co-authors on the study were Jichen Yang, a visiting scholar of mathematics at UT Arlington, Larrissa Owens, a PhD student and National Science Foundation GK-12 fellow in mathematics, and Akif Ibraguimov, professor in the department of mathematics and statistics at Texas Tech University.

Almost all medical implants cause some degree of foreign body reaction, which can cause severe inflammation and the formation of fibrotic capsules in surrounding tissue, according to the paper. These conditions can compromise the device's effectiveness. The reaction's severity is governed in large part by the behavior of microphages, cells that can rapidly change in response to signals from the body and its immune system.

The research team divided microphages into three types based on their functions. Then, they constructed a series of mathematical equations based on the kinetic characteristics of the microphages and fibroblasts, or connective tissue. Su said reviewing results available from wound healing, especially at the skin's surface, helped increase the accuracy of their calculations.

"Foreign body reactions are very complex, involving many cells, proteins and other biological elements. The experimental measurement data are really scarce to capture the entire process," Su said. "We overcome this difficulty by learning from what happens in wound healing, a similar biological process."

The cross-disciplinary collaboration between Su and Tang is the kind of effort necessary for far-reaching scientific advances, said Carolyn Cason, UT Arlington's vice president for research.

"Research universities such as UT Arlington are at their best when they bring together great thinkers and encourage them to reach outside their academic silos to solve scientific questions," Cason said.

Su and Tang plan to continue their research by addressing some of the biological conditions unique in patients that could affect wound healing and foreign body interactions. Those calculations could make their model more reliable, they said.


Story Source:

The above story is based on materials provided by University of Texas at Arlington. Note: Materials may be edited for content and length.


Journal Reference:

  1. Jichen Yang, Jianzhong Su, Larrissa Owens, Akif Ibraguimov, Liping Tang. A Computational Model of Fibroblast and Macrophage Spatial/Temporal Dynamics in Foreign Body Reactions. Journal of Immunological Methods, 2013; DOI: 10.1016/j.jim.2013.08.013

Cite This Page:

University of Texas at Arlington. "Researchers successfully test model for implant device reactions." ScienceDaily. ScienceDaily, 24 September 2013. <www.sciencedaily.com/releases/2013/09/130924103502.htm>.
University of Texas at Arlington. (2013, September 24). Researchers successfully test model for implant device reactions. ScienceDaily. Retrieved August 1, 2014 from www.sciencedaily.com/releases/2013/09/130924103502.htm
University of Texas at Arlington. "Researchers successfully test model for implant device reactions." ScienceDaily. www.sciencedaily.com/releases/2013/09/130924103502.htm (accessed August 1, 2014).

Share This




More Computers & Math News

Friday, August 1, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Google (Kind Of) Complies With 'Right To Be Forgotten Law'

Google (Kind Of) Complies With 'Right To Be Forgotten Law'

Newsy (July 31, 2014) Google says it is following Europe's new "Right To Be Forgotten Law," which eliminates user information upon request, but only to a certain degree. Video provided by Newsy
Powered by NewsLook.com
Tesla, Panasonic Ink Deal To Make Huge Battery 'Gigafactory'

Tesla, Panasonic Ink Deal To Make Huge Battery 'Gigafactory'

Newsy (July 31, 2014) The deal will help build a massive battery factory that Tesla says will produce 500,000 lithium batteries by 2020. Video provided by Newsy
Powered by NewsLook.com
Sprint's Custom Prepaid Plans Draw Net Neutrality Fire

Sprint's Custom Prepaid Plans Draw Net Neutrality Fire

Newsy (July 31, 2014) Sprint's Virgin Mobile Custom plan offers optional social network access that doesn't count against data caps — but critics are crying foul. Video provided by Newsy
Powered by NewsLook.com
Britain Testing Driverless Cars on Roadways

Britain Testing Driverless Cars on Roadways

AP (July 30, 2014) British officials said on Wednesday that driverless cars will be tested on roads in as many as three cities in a trial program set to begin in January. Officials said the tests will last up to three years. (July 30) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins