Featured Research

from universities, journals, and other organizations

Improving lithium-ion batteries with nanoscale research

Date:
September 30, 2013
Source:
University of California - San Diego
Summary:
New research led by an electrical engineer is aimed at improving lithium-ion batteries through possible new electrode architectures with precise nano-scale designs. The researchers created nanowires that block diffusion of lithium across their silicon surface and promote layer-by-layer axial lithiation of the nanowire's germanium core.

TEM image of a Silicon / Germanium nanowire.
Credit: Image courtesy of University of California - San Diego

New research led by an electrical engineer at the University of California, San Diego is aimed at improving lithium-ion batteries through possible new electrode architectures with precise nano-scale designs. The researchers created nanowires that block diffusion of lithium (Li) across their silicon surface and promote layer-by-layer axial lithiation of the nanowire's germanium core.

Related Articles


Shadi Dayeh, a professor in the Department of Electrical and Computer Engineering at the UC San Diego Jacobs School of Engineering, explained that this work could lead to "an effective way to tailor volume expansion of lithium ion battery electrodes which could potentially minimize their cracking, improve their durability, and perhaps influence how one could think about different electrode architectures."

The research was recently published in the journal Nano Letters in the paper "Tailoring Lithiation Behavior by Interface and Bandgap Engineering at the Nanoscale."

By coating germanium nanowires with silicon, the researchers stopped nearly all surface diffusion of lithium ions into the nanowires. Instead, lithium diffusion, known as lithiation, occurred layer by layer along the axis of the nanowire. This is in contrast to lithiation from the surface of nanowires not covered with silicon.

"These results demonstrate for the first time that interface and bandgap engineering of electrochemical reactions can be utilized to control the nanoscale ionic transport / insertion paths and thus may be a new tool to define the electrochemical reactions in Li-ion batteries," the researchers write in their Nano Letters paper.

This work builds on research demonstrating excellent control over germanium / silicon (Ge/Si) heterostructuring, which Dayeh and colleagues recently published as a cover article in Applied Physics Letters and a cover letter in the journal Nano Letters.

Dayeh grew the nanowires during his time as a postdoctoral researcher at Los Alamos National Laboratory (LANL). Lithiation experiments were performed by two postdoctoral researchers from Sandia National Laboratories, Drs. Yang Liu and Xiaohua Liu, and Dayeh's postdocdoral researchers working at LANL. Dayeh formulated the mechanism and performed the analysis and simulations after joining the faculty of the Electrical and Computer Engineering Department at the UC San Diego Jacobs School of Engineering.

Funding sources for this research includes Nanostructures for Electrical Energy Storage (NEES), an Energy Frontier Research Center (EFRC) funded by the U.S. Department of Energy, Los Alamos National Laboratory, Sandia National Laboratories, and UC San Diego.

Video on YouTube that shows the axial lithiation of a silicon-coated nanowire's germanium core, as well as radial diffusion of lithium into an uncoated germanium nanowire. : http://www.youtube.com/watch?v=WW3E6GMQ_aE&list=UUXjJpwPmI6TVSPQFdYSRBvg


Story Source:

The above story is based on materials provided by University of California - San Diego. Note: Materials may be edited for content and length.


Journal Reference:

  1. Yang Liu, Xiao-Hua Liu, Binh-Minh Nguyen, Jinkyoung Yoo, John Sullivan, S. Tom Picraux, Jian Yu Huang, Shadi A. Dayeh. Tailoring Lithiation Behavior by Interface and Bandgap Engineering at the Nanoscale. Nano Letters, 2013; 130903125259008 DOI: 10.1021/nl4027549

Cite This Page:

University of California - San Diego. "Improving lithium-ion batteries with nanoscale research." ScienceDaily. ScienceDaily, 30 September 2013. <www.sciencedaily.com/releases/2013/09/130930140520.htm>.
University of California - San Diego. (2013, September 30). Improving lithium-ion batteries with nanoscale research. ScienceDaily. Retrieved November 26, 2014 from www.sciencedaily.com/releases/2013/09/130930140520.htm
University of California - San Diego. "Improving lithium-ion batteries with nanoscale research." ScienceDaily. www.sciencedaily.com/releases/2013/09/130930140520.htm (accessed November 26, 2014).

Share This


More From ScienceDaily



More Matter & Energy News

Wednesday, November 26, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Who Will Failed Nuclear Talks Hurt Most?

Who Will Failed Nuclear Talks Hurt Most?

Reuters - Business Video Online (Nov. 25, 2014) With no immediate prospect of sanctions relief for Iran, and no solid progress in negotiations with the West over the country's nuclear programme, Ciara Lee asks why talks have still not produced results and what a resolution would mean for both parties. Video provided by Reuters
Powered by NewsLook.com
Flying Enthusiast Converts Real-Life Aircraft Cockpit Into Simulator

Flying Enthusiast Converts Real-Life Aircraft Cockpit Into Simulator

Reuters - Innovations Video Online (Nov. 25, 2014) A virtual flying enthusiast converts parts of a written-off Airbus aircraft into a working flight simulator in his northern Slovenian home. Jim Drury reports. Video provided by Reuters
Powered by NewsLook.com
Car Park Solution for Flexible Green Energy

Car Park Solution for Flexible Green Energy

Reuters - Innovations Video Online (Nov. 24, 2014) A British solar power start-up says that by covering millions of existing car park spaces around the UK with flexible solar panels, the country's power problems could be solved. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Microsoft Adds Robot Guards, Ushers In Sci-Fi Apocalypse

Microsoft Adds Robot Guards, Ushers In Sci-Fi Apocalypse

Newsy (Nov. 23, 2014) Microsoft has robotic security guards working at its Silicon Valley Campus. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins