Featured Research

from universities, journals, and other organizations

Computer scientists develop new approach to sort cells up to 38 times faster

Date:
October 2, 2013
Source:
University of California - San Diego
Summary:
A team of engineers led by computer scientists has developed a new approach that marries computer vision and hardware optimization to sort cells up to 38 times faster than is currently possible. The approach could be used for clinical diagnostics, stem cell characterization and other applications.

The different stages of the algorithm researchers used.
Credit: UCSD Jacobs

A team of engineers led by computer scientists at the University of California, San Diego, has developed a new approach that marries computer vision and hardware optimization to sort cells up to 38 times faster than is currently possible. The approach could be used for clinical diagnostics, stem cell characterization and other applications.

The approach improves on a technique known as imaging flow cytometry, which uses a camera mounted on a microscope to capture the morphological features of hundreds to thousands of cells per second while the cells are suspended in a solution moving at approximately 4 meters per second. The technique sorts cells into different categories, for example benign or malignant cells, based on their shape and structure. If these features can be calculated fast enough, the cells can be sorted in real-time.

"Previous techniques simply could not keep up with the image data streaming off of this high speed camera," said Ryan Kastner, a professor of computer science at the Jacobs School of Engineering at UC San Diego. "This has to potential to lead to a number of clinical breakthroughs, and we are working closely with UCLA and their industrial partners to commercialize our technology."

Other researchers had previously discovered that the physical properties of cells could provide useful information about cell health, but previous techniques had been confined to academic research labs because measuring the cells of interest could take hours or even days. The new approach brings imaging flow cytometry closer to being used in a clinical setting.

The microscope-mounted camera used in imaging flow cytometry operates at 140,000 frames per second. But algorithms currently in use take anywhere from 10 seconds to 0.4 seconds to analyze a single frame, depending on the programming language used -- making the technique impractical.

The researchers' new approach speeds processing speeds up to 11.94 milliseconds and 151.7 milliseconds depending on the type of hardware used. For the fastest results, engineers developed a custom hardware solution using a field-gate programmable array, or FPGA, which speeds up the process considerably. The slower results, which are still much faster than what's currently available, were obtained using a graphics processing unit, or GPU.

The researchers' ultimate goal is to analyze the cell properties in real-time, and use that information to sort the cells. To do so, the sorting decision must be made in less than 10 milliseconds.

The computer scientists presented their findings in September at the International Conference on Field Programmable Logic and Applications in Portugal.

Computer vision algorithm and hardware optimization

The ultimate goal of the algorithm is to determine the radius at every angle of the cell. This provides the necessary information to determine the cell's key features. Ideally this process needs to be performed on every frame in about 7 microseconds per frame. The algorithm must first detect the presence of the cell, then find the center of the cell, and finally determine the distance from this center to the cell wall for every angle, finding the cell's radius. To do this reliably, yet still meet stringent timing requirements, the algorithm was carefully modified to run faster on the FPGA.

The Blob Search module analyzes the images to detect the cell's area. It then converts the black and white image of the cell into a digital image called a binary image, where each pixel carries either a zero or non-zero value. In this case, only the pixels representing the cell are highlighted. The system then constructs a graphical representation of the distribution of data in the image, known as a histogram. It then crops a 20 by 20 pixel image around the cell.

The Interpolation step resizes the picture up to 200 by 200 pixels. It also generates a higher-contrast image of the cell. Then the Find Center module finds the center of the cell by converting the higher contrast images to binary images. It then counts the pixels with a non-zero value in each row and column of the image. The module averages the data from the two images produced by the Interpolation module to find the cell's center point. Finally, the algorithm determines the cell's shape and morphological properties by finding the darkest pixels on a line from the cell center at each angle of the image, which are considered to be part of the cell's wall.

The researchers then carefully analyzed each step in the algorithm, and made modifications to the algorithm when necessary to implement it efficiently on the FPGA. When mapping to custom hardware, the designer must carefully consider the complexity of the algorithm versus the accuracy of the result. Certain algorithmic features, such as algorithms with larger number of decisions points or those requiring multiple passes over the data, make for a slow and inefficient hardware solution.

They found that they obtained much better results with FPGA than with GPU. That's because FPGAs, unlike GPUs, can be configured so that they match the algorithm exactly. All operations occur at lightning-fast speeds. It takes the system under 500 microseconds to detect a cell and calculate its radius.


Story Source:

The above story is based on materials provided by University of California - San Diego. Note: Materials may be edited for content and length.


Cite This Page:

University of California - San Diego. "Computer scientists develop new approach to sort cells up to 38 times faster." ScienceDaily. ScienceDaily, 2 October 2013. <www.sciencedaily.com/releases/2013/10/131002141157.htm>.
University of California - San Diego. (2013, October 2). Computer scientists develop new approach to sort cells up to 38 times faster. ScienceDaily. Retrieved April 16, 2014 from www.sciencedaily.com/releases/2013/10/131002141157.htm
University of California - San Diego. "Computer scientists develop new approach to sort cells up to 38 times faster." ScienceDaily. www.sciencedaily.com/releases/2013/10/131002141157.htm (accessed April 16, 2014).

Share This



More Computers & Math News

Wednesday, April 16, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

German Researchers Crack Samsung's Fingerprint Scanner

German Researchers Crack Samsung's Fingerprint Scanner

Newsy (Apr. 16, 2014) German researchers have used a fake fingerprint made from glue to bypass the fingerprint security system on Samsung's new Galaxy S5 smartphone. Video provided by Newsy
Powered by NewsLook.com
Twitter, Apple Social Data Purchases Likely to Spur More Mergers and Acquisitions

Twitter, Apple Social Data Purchases Likely to Spur More Mergers and Acquisitions

TheStreet (Apr. 16, 2014) The social media data space is likely to see more mergers and acquisitions following Twitter Inc.'s acquisition of tweet analyzer Gnip Inc. on Tuesday and Apples Inc.'s purchase of Topsy Labs Inc. back in December. One firm in particular, the U.K.'s DataSift Inc., could be on the list of potential buyers. Among other social media startups that could be ripe for picking is Banjo, whose mobile app provides aggregated content by topic and location. Banjo could also be a good fit for Twitter. Video provided by TheStreet
Powered by NewsLook.com
Bitcoin Exchange Mt. Gox to Liquidate After Rebuilding Rejected

Bitcoin Exchange Mt. Gox to Liquidate After Rebuilding Rejected

TheStreet (Apr. 16, 2014) Bitcoin exchange Mt. Gox has agreed to liquidate after a Japanese court rejected its plans to rebuild, according to a report by the Wall Street Journal. Mt. Gox filed for bankruptcy protection in February after announcing about 850,000 bitcoins, worth around $454 million at today's rates, may have been stolen by hackers. It has since recovered 200,000 of the missing bitcoins. The court put Mt. Gox's assets under a provisional administrator's control until bankruptcy proceedings begin. Video provided by TheStreet
Powered by NewsLook.com
BlackBerry: The Crash That Launched 1,000 Startups

BlackBerry: The Crash That Launched 1,000 Startups

Reuters - Business Video Online (Apr. 16, 2014) Tech startups in BlackBerry's hometown of Waterloo, Ontario, are tapping talent from the struggling smartphone company and filling the void left in the region by its meltdown. Reuters correspondent Euan Rocha visits the region that could become Canada's Silicon Valley. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins