Featured Research

from universities, journals, and other organizations

First computer-designed superconductor created

Date:
October 8, 2013
Source:
Binghamton University
Summary:
Scientists report the successful synthesis of the first superconductor designed entirely on the computer.

A Binghamton University scientist and his international colleagues report this week on the successful synthesis of the first superconductor designed entirely on the computer. Their findings were published in Physical Review Letters, the leading journal in the field.

Related Articles


Aleksey Kolmogorov, assistant professor of physics at Binghamton, proposed the new superconductor in Physical Review Letters in 2010 and then teamed up with leading experimental groups in Germany, Belgium, Italy and France to test the prediction.

The synthesized material -- a novel iron tetraboride compound -- is made out of two common elements, has a brand-new crystal structure and exhibits an unexpected type of superconductivity for a material that contains iron, just as predicted in the original computational study.

"Paradigm-shifting superconducting materials have so far been discovered experimentally, and oftentimes accidentally," Kolmogorov says.

Until now, theory has been used primarily to investigate superconducting mechanisms and, in rare cases, suggest ways that existing materials might be modified to become superconductors. But many proposed superconducting materials are not stable enough to form and those that do form are poor superconductors.

Superconductors, which conduct electric current without any resistance when cooled below a certain temperature, have many interesting applications. For instance, power lines made out of superconducting materials can significantly reduce the energy lost in transmission. Superconducting magnets are also used in high-speed levitating trains and could improve wind turbines.

The phenomenon of superconductivity was discovered more than 100 years ago, with breakthroughs in the 1960s bringing it into practical application in a variety of technologies. The critical temperature, or Tc, for superconductors discovered to date is between 0 and 136 Kelvin (-460 and -214 degrees Fahrenheit). This means that most superconductors require expensive cooling mechanisms. Scientists are still searching for new materials that are superconductors at higher temperatures and can be mass produced.

More than five years ago, Kolmogorov, then at Oxford University, began studying boron-based materials, which have remarkably complex structures and a wide range of applications. He developed an automated computational tool to identify previously unknown stable crystal structures without any input from experiment. His "evolutionary" algorithm emulates nature, meaning it favors more stable materials among thousands of possibilities. (Kolmogorov is a computational physicist, but he also dreams of holding a compound in his hands that he predicted in silico.)

The search revealed two promising compounds in a common iron-boron system, which came as a surprise. Moreover, graduate student Sheena Shah's calculations indicated that one of them should be a superconductor at an unusually high temperature of 15-20 Kelvin for the considered (so-called "conventional") type of superconductivity.

Months of double-checking confirmed the preliminary results on the stability and superconductivity of the compound. Still, the 2010 theoretical discovery was met with skepticism.

Natalia Dubrovinskaia and Leonid Dubrovinsky, professors at the University of Bayreuth in Germany, undertook a year-long series of challenging high-pressure experiments and produced a very small quantity of iron tetraboride in the predicted crystal structure, leading to the most recent journal article. Detailed measurements also demonstrated the material's predicted superconducting property and, unexpectedly, its exceptional hardness.

"The discovery of this superhard superconductor demonstrates that new compounds can be brought into existence by revisiting seemingly well-studied systems," Kolmogorov says. Now that this material has been synthesized, it may be possible to modify it and raise the temperature at which it becomes a superconductor.

Next, Kolmogorov plans to turn his attention to metal oxides. "They are fascinating because they have applications as catalysts, photovoltaic materials and protective coatings," he says. "We hope our predictive methodology will lead to more exciting discoveries."


Story Source:

The above story is based on materials provided by Binghamton University. The original article was written by Rachel Coker. Note: Materials may be edited for content and length.


Journal Reference:

  1. Huiyang Gou, Natalia Dubrovinskaia, Elena Bykova, Alexander A. Tsirlin, Deepa Kasinathan, Walter Schnelle, Asta Richter, Marco Merlini, Michael Hanfland, Artem M. Abakumov, Dmitry Batuk, Gustaaf Van Tendeloo, Yoichi Nakajima, Aleksey N. Kolmogorov, and Leonid Dubrovinsky. Discovery of a Superhard Iron Tetraboride Superconductor. Physical Review Letters, 2013 DOI: 10.1103/PhysRevLett.111.157002

Cite This Page:

Binghamton University. "First computer-designed superconductor created." ScienceDaily. ScienceDaily, 8 October 2013. <www.sciencedaily.com/releases/2013/10/131008132851.htm>.
Binghamton University. (2013, October 8). First computer-designed superconductor created. ScienceDaily. Retrieved November 20, 2014 from www.sciencedaily.com/releases/2013/10/131008132851.htm
Binghamton University. "First computer-designed superconductor created." ScienceDaily. www.sciencedaily.com/releases/2013/10/131008132851.htm (accessed November 20, 2014).

Share This


More From ScienceDaily



More Computers & Math News

Thursday, November 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

You Now 'Get' No-Cost Downloads In Apple's App Store

You Now 'Get' No-Cost Downloads In Apple's App Store

Newsy (Nov. 20, 2014) Apple has changed its App Store wording from "Free" to "Get," as the European Commission and Federal Trade Commission seek to protect consumers. Video provided by Newsy
Powered by NewsLook.com
Firefox Boots Google As Default Search, Partners With Yahoo

Firefox Boots Google As Default Search, Partners With Yahoo

Newsy (Nov. 20, 2014) Mozilla on Wednesday announced it would be replacing Google with Yahoo as Firefox's default search provider. Video provided by Newsy
Powered by NewsLook.com
Nielsen Ratings Could Be Bad News For Netflix

Nielsen Ratings Could Be Bad News For Netflix

Newsy (Nov. 19, 2014) Streaming services probably aren't happy about Nielsen's plans to begin tracking their viewership next month. Video provided by Newsy
Powered by NewsLook.com
Madrid Hosts 14th World Congress on Humanoid Robots

Madrid Hosts 14th World Congress on Humanoid Robots

AFP (Nov. 19, 2014) 14th World Congress on humanoid robots in full swing under the theme "Humans and robots face-to-face" Duration: 01:08 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins