Featured Research

from universities, journals, and other organizations

100 percent of an image restored using a version containing between one and 10 percent of the information

Date:
October 24, 2013
Source:
Basque Research
Summary:
A computer engineer has developed algorithms to reduce and optimize images; using a reduced image (with between 1 percent and 10 percent of the information from the original image), they allow 100 percent of the pixels in the initial image to be restored.

In his PhD thesis, Daniel Paternain-Dallo, Computer Engineer of the NUP/UPNA-Public University of Navarre, has developed algorithms to reduce and optimize images; using a reduced image (with between 1% and 10% of the information from the original image), they allow 100% of the pixels in the initial image to be restored. "With these algorithms we can obtain high quality images that are very similar to the original. We have shown that even if we lose 100% of the pixels of the image, we can restore a lost image with a very high level of quality just by using the information from the reduced image." The PhD thesis is entitled Optimization of image reduction and restoration algorithms based on penalty functions and aggregation techniques.

Related Articles


Daniel Paternain's research comes within the framework of the digital processing of images, a discipline that has burgeoned tremendously over the last forty years. In fact, the high quality of current digital images is partly due to the fact that there is increasingly greater spatial resolution (higher number of pixels); in other words, it is possible to use a much larger quantity of information to represent the same scene.

As the researcher points out, the two main problems of high resolution images are the cost in storing or transmitting them (over the Internet, for example) and the long period of time that computers take to process them. To solve these two problems at the same time, Daniel Paternain's thesis puts forward various algorithms to reduce images in terms of both colour and greyscales. "The aim," he explains, "is to reduce the number of pixels the image contains while trying to keep all or as much as possible of the information and properties contained in the original image."

The main idea underpinning the algorithms developed is to divide the image into small zones that are processed individually. "For each zone we look for a value that is simultaneously the least different from all the pixels that form the zone. By following this methodology, we can design algorithms that are very efficient in terms of execution time, and capable of being adapted to the local properties of each zone of the image."

Firstly, he developed an algorithm to reduce the images on the greyscale. Aggregation functions are used to achieve this; "they are highly applicable because they study the way of combining various homogeneous or heterogeneous sources of information into a single value to represent them." Furthermore, for colour images in which each pixel contains a larger amount of information, he studied the so-called penalty functions. "This mathematical tool enables us by means of optimization algorithms to automatically select the aggregation function most suited to each zone of the colour image."

Image restoration

The final step in his research explored how to apply the reduction algorithms to one of the most difficult problems in image processing: restoring digital images. "Let us assume that we lose a large quantity of pixels owing to a transmission error or a problem when processing the image," explains Paternain. The restoration algorithm seeks to estimate the original value of the pixels we have lost and to obtain an image as similar as possible to the original."

To make the restoration possible, it is necessary to have available in advance a highly reduced version of the original image that will concentrate most of its properties. The more information we have stored in the reduced image, the greater the quality of the restored image will be. "This reduced version cannot be very big as we don't want to excessively increase the cost of storing the image. The reduced images we obtain through these algorithms account for between 1% and 10% of the original image." After that, an optimization algorithm is generated; it is capable of estimating the value of the lost pixels using the information contained in the damaged image as well as in the reduced image.

"We have shown that by using the algorithms proposed in this thesis, we can obtain images of high quality that are very similar to the original. We have shown that even if we lose 100% of the pixels of the image, we can, with a very high level of quality, restore an image that has been completely lost, just by using the information from the reduced image."


Story Source:

The above story is based on materials provided by Basque Research. Note: Materials may be edited for content and length.


Cite This Page:

Basque Research. "100 percent of an image restored using a version containing between one and 10 percent of the information." ScienceDaily. ScienceDaily, 24 October 2013. <www.sciencedaily.com/releases/2013/10/131024141436.htm>.
Basque Research. (2013, October 24). 100 percent of an image restored using a version containing between one and 10 percent of the information. ScienceDaily. Retrieved October 23, 2014 from www.sciencedaily.com/releases/2013/10/131024141436.htm
Basque Research. "100 percent of an image restored using a version containing between one and 10 percent of the information." ScienceDaily. www.sciencedaily.com/releases/2013/10/131024141436.htm (accessed October 23, 2014).

Share This



More Computers & Math News

Thursday, October 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Chameleon Camouflage to Give Tanks Cloaking Capabilities

Chameleon Camouflage to Give Tanks Cloaking Capabilities

Reuters - Innovations Video Online (Oct. 22, 2014) — Inspired by the way a chameleon changes its colour to disguise itself; scientists in Poland want to replace traditional camouflage paint with thousands of electrochromic plates that will continuously change colour to blend with its surroundings. The first PL-01 concept tank prototype will be tested within a few years, with scientists predicting that a similar technology could even be woven into the fabric of a soldiers' clothing making them virtually invisible to the naked eye. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Internet of Things Aims to Smarten Your Life

Internet of Things Aims to Smarten Your Life

AP (Oct. 22, 2014) — As more and more Bluetooth-enabled devices are reaching consumers, developers are busy connecting them together as part of the Internet of Things. (Oct. 22) Video provided by AP
Powered by NewsLook.com
Google's Inbox Is The Latest Gmail Competitor

Google's Inbox Is The Latest Gmail Competitor

Newsy (Oct. 22, 2014) — Google's new e-mail app is meant for greater personalization and allows users to better categorize their mail, but Gmail isn't going away just yet. Video provided by Newsy
Powered by NewsLook.com
Free Math App Is A Teacher's Worst Nightmare

Free Math App Is A Teacher's Worst Nightmare

Newsy (Oct. 22, 2014) — New photo-recognition software from MicroBlink, called PhotoMath, solves linear equations and simple math problems with step-by-step results. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins