Featured Research

from universities, journals, and other organizations

New findings could overcome stumbling blocks to tissue cryopreservation

Date:
November 5, 2013
Source:
Cell Press
Summary:
Developing an efficient way to freeze and store living tissues could transform many aspects of medical care and research. Ice crystallization often occurs within cells during such cryopreservation procedures, leading to cell death. Researchers have now gained new information about the processes that are responsible for promoting the freezing of cells within tissues. This knowledge may ultimately lead to novel approaches for preventing tissue injury during cryopreservation.

This illustration shows how ice invades the space between two cells, an event that triggers crystallization of the cell water. The view shown here is a cross-section through the interface where the two cells meet. So-called tight junctions, which are depicted as small spheres arranges in rows, are embedded in the cell membrane and form seams that stitch the two cells together. Although these seams normally act as barriers that prevent ice from invading the tissue, the research by Higgins and Karlsson demonstrated that if the temperature is sufficiently low, extracellular ice can penetrate through nanoscale openings in the tight junction seams. As a result, the cells in the vicinity of the breach become much more susceptible to freezing damage.
Credit: Scott Leighton

Developing an efficient way to freeze and store living tissues could transform many aspects of medical care and research, but ice crystallization often occurs within cells during such cryopreservation procedures, leading to cell death. In the November 5 issue of the Biophysical Journal, a Cell Press publication, researchers report that they have gained new information about the processes that are responsible for promoting the freezing of cells within tissues. This knowledge may ultimately lead to novel approaches for preventing tissue injury during cryopreservation.

A long-standing obstacle to avoiding tissue damage during freezing is that when cells are joined together within tissues, individual cells are more likely to crystallize than if the cells are kept apart. "In tissues, ice crystals are thought to be able to grow through membrane channels called gap junctions, thus allowing ice to easily propagate from cell to cell," explains senior author Dr. Jens Karlsson, of the Department of Mechanical Engineering at Villanova University. "But the results of the present study indicate that the mechanism of tissue cryo-injury is much more complex than was previously thought."

Dr. Karlsson and his team monitored microscopic freezing events inside genetically modified cells and used mathematical models to show that gap junctions do not always provide the major pathway for the spreading of ice crystals between cells. They saw that cell-to-cell propagation of ice also occurred during freezing of tissue samples in which gap junction formation had been suppressed. The authors discovered that intercellular connections -- in which neighboring cell membranes are stitched together by rows of rivet-like structures known as tight junctions -- also play a significant role.

"By using high-speed video imaging, we found evidence that ice from outside the cells sometimes forms nanoscale branches, which can penetrate the barriers created by tight junction seams," says Dr. Karlsson. "The resulting invasion of the spaces between cells appears to promote crystallization of the cells adjacent to the breach."

The unexpected findings may provide a boon for the manufacturing of engineered tissue products that can be used for grafts and organ transplantations. "Using cryopreservation to stop living tissue constructs from spoiling during storage will be the key to enabling economical mass production, quality assurance, and shipping logistics for these life-saving products," says Dr. Karlsson.


Story Source:

The above story is based on materials provided by Cell Press. Note: Materials may be edited for content and length.


Journal Reference:

  1. Higgins et al. Effects of Intercellular Junction Protein Expression on Intracellular Ice. Biophysical Journal, November 2013

Cite This Page:

Cell Press. "New findings could overcome stumbling blocks to tissue cryopreservation." ScienceDaily. ScienceDaily, 5 November 2013. <www.sciencedaily.com/releases/2013/11/131105121415.htm>.
Cell Press. (2013, November 5). New findings could overcome stumbling blocks to tissue cryopreservation. ScienceDaily. Retrieved August 30, 2014 from www.sciencedaily.com/releases/2013/11/131105121415.htm
Cell Press. "New findings could overcome stumbling blocks to tissue cryopreservation." ScienceDaily. www.sciencedaily.com/releases/2013/11/131105121415.htm (accessed August 30, 2014).

Share This




More Health & Medicine News

Saturday, August 30, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

We've Got Mites Living In Our Faces And So Do You

We've Got Mites Living In Our Faces And So Do You

Newsy (Aug. 30, 2014) A new study suggests 100 percent of adult humans (those over 18 years of age) have Demodex mites living in their faces. Video provided by Newsy
Powered by NewsLook.com
Liberia Continues Fight Against Ebola

Liberia Continues Fight Against Ebola

AFP (Aug. 30, 2014) Authorities in Liberia try to stem the spread of the Ebola epidemic by raising awareness and setting up sanitation units for people to wash their hands. Duration: 00:41 Video provided by AFP
Powered by NewsLook.com
California Passes 'yes-Means-Yes' Campus Sexual Assault Bill

California Passes 'yes-Means-Yes' Campus Sexual Assault Bill

Reuters - US Online Video (Aug. 30, 2014) California lawmakers pass a bill requiring universities to adopt "affirmative consent" language in their definitions of consensual sex, part of a nationwide drive to curb sexual assault on campuses. Linda So reports. Video provided by Reuters
Powered by NewsLook.com
3 Things To Know About The Ebola Outbreak's Progression

3 Things To Know About The Ebola Outbreak's Progression

Newsy (Aug. 29, 2014) Here are three things you need to know about the deadly Ebola outbreak's progression this week. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins