Featured Research

from universities, journals, and other organizations

Study connects dots between genes, human behavior

Date:
November 27, 2013
Source:
Salk Institute for Biological Studies
Summary:
Establishing links between genes, the brain and human behavior is a central issue in cognitive neuroscience research, but studying how genes influence cognitive abilities and behavior as the brain develops from childhood to adulthood has proven difficult. Now, an international team of scientists has made inroads to understanding how genes influence brain structure and cognitive abilities and how neural circuits produce language.

Establishing links between genes, the brain and human behavior is a central issue in cognitive neuroscience research, but studying how genes influence cognitive abilities and behavior as the brain develops from childhood to adulthood has proven difficult.

Now, an international team of scientists has made inroads to understanding how genes influence brain structure and cognitive abilities and how neural circuits produce language.

The team studied individuals with a rare disorder known as Williams syndrome. By measuring neural activity in the brain associated with the distinct language skills and facial recognition abilities that are typical of the syndrome, they showed that Williams is due not to a single gene but to distinct subsets of genes, hinting that the syndrome is more complex than originally thought.

"Solutions to understanding the connections between genes, neural circuits and behavior are now emerging from a unique union of genetics and neuroscience," says Julie Korenberg, a University of Utah professor and an adjunct professor at the Salk Institute, who led the genetics aspects on the new study.

The study was led by Debra Mills, a professor of cognitive neuroscience at Bangor University in Wales. Ursula Bellugi, a professor at the Salk Institute for Biological Studies in La Jolla, was also integrally involved in the research.

Korenberg was convinced that with Mills' approach of directly measuring the brain's electrical firing they could solve the puzzle of precisely which genes were responsible for building the brain wiring underlying the different reaction to human faces in Williams syndrome.

"We also discovered," says Mills, "that in those with Williams syndrome, the brain processes language and faces abnormally from early childhood through middle age. This was a surprise because previous studies had suggested that part of the Williams brain functions normally in adulthood, with little understanding about how it developed."

The results of the study were published November 12 in Developmental Neuropsychology.

Williams syndrome is caused by the deletion of one of the two usual copies of approximately 25 genes from chromosome 7, resulting in mental impairment. Nearly everyone with the condition is missing these same genes, although a few rare individuals retain one or more genes that most people with Williams have lost. Korenberg was the early pioneer of studying these individuals with partial gene deletions as a way of gathering clues to the specific function of those genes and gene networks. The syndrome affects approximately 1 in 10,000 people around the world, including an estimated 20,000 to 30,000 individuals in the United States.

Although individuals with Williams experience developmental delays and learning disabilities, they are exceptionally sociable and possess remarkable verbal abilities and facial recognition skills in relation to their lower IQ. Bellugi has long observed that sociability also seems to drive language and has spent much of her career studying those with Williams syndrome.

"Williams offers us a window into how the brain works at many different levels," says Bellugi. "We have the tools to measure the different cognitive abilities associated with the syndrome, and thanks to Julie and Debbie we are now able to combine this with studies of the underlying genetic and neurological aspects."

Suspecting that specific genes might lie at the origins of brain plasticity, functional changes in the brain that occur with new knowledge or experiences, and that these genes might be linked to the unusual proficiencies of those with Williams, the team enrolled individuals of various ages in their study. They drew from children, adolescents and adults who all had the full genetic deletion for Williams syndrome and compared them with their non-affected peers. Their study is additionally significant for being one of the first to examine the brain structure and its functioning in children with Williams. And, as Korenberg predicted, a critical piece of the puzzle came from including in their study two adults with partial genetic deletions for Williams.

Using highly sensitive sensors to measure brain activity, the researchers, led by Mills, presented their study participants with both visual and auditory stimuli in the form of unfamiliar faces and spoken sentences. They charted the small changes in voltage generated by the areas of the brain responding to these stimuli, a process known as event-related potentials (ERPs). Mills was the first to publish studies on Williams syndrome using ERPs, developed the ERP markers for this study, and oversaw its design and analysis.

Mills identified ERP markers of brain plasticity in Williams syndrome in children and adults of varying ages and developmental stages. These findings are important because the brains of people with Williams are structured differently than those of people without the syndrome. In the Williams brain, the dorsal areas (along the back and top), which help control vision and spatial understanding, are undersized. The ventral areas (at the front and the bottom), which influence language, facial recognition, emotion and social drive, are relatively normal in size.

It was previously believed that in individuals with Williams, the ventral portion of the brain operated normally. What the team discovered, however, was that this area of the brain also processed information differently than those without the syndrome, and did so throughout development, from childhood to the adult years. This suggests that the brain was compensating in order to analyze information; in other words, it was exhibiting plasticity. Of additional importance, the distinct ERP markers identified by Mills are so characteristic of the different brain organization in Williams that this information alone is approximately 90 percent accurate when analyzing brain activity to identify someone with Williams syndrome.

Other key findings of the study resulted from comparing the ERPs of participants with full Williams deletion with those with partial genetic deletions. While psychological tests focused on facial recognition show no difference between these groups, the scientists found differences in these recognition abilities on the ERP measurements, which look directly at neural activity. Thus, the scientists were able to see how very slight genetic differences affected brain activity, which will allow them identify the roles of sub-sets of Williams genes in brain development and in adult facial recognition abilities.

By combining these one-in-a-million people with tools capable of directly measuring brain activity, the scientists now have the unprecedented opportunity to study the genetic underpinnings of mental disorders. The results of this study not only advance science's understanding of the links between genes, the brain and behavior, but may lead to new insight into such disorders as autism, Down syndrome and schizophrenia. "By greatly narrowing the specific genes involved in social disorders, our findings will help uncover targets for treatment and provide measures by which these and other treatments are successful in alleviating the desperation of autism, anxiety and other disorders," says Korenberg.


Story Source:

The above story is based on materials provided by Salk Institute for Biological Studies. Note: Materials may be edited for content and length.


Journal Reference:

  1. D. L. Mills, L. Dai, I. Fishman, A. Yam, L. G. Appelbaum, M. St. George, A. Galaburda, U. Bellugi, J. R. Korenberg. Genetic Mapping of Brain Plasticity Across Development in Williams Syndrome: ERP Markers of Face and Language Processing. Developmental Neuropsychology, 2013; 38 (8): 613 DOI: 10.1080/87565641.2013.825617

Cite This Page:

Salk Institute for Biological Studies. "Study connects dots between genes, human behavior." ScienceDaily. ScienceDaily, 27 November 2013. <www.sciencedaily.com/releases/2013/11/131127170135.htm>.
Salk Institute for Biological Studies. (2013, November 27). Study connects dots between genes, human behavior. ScienceDaily. Retrieved July 25, 2014 from www.sciencedaily.com/releases/2013/11/131127170135.htm
Salk Institute for Biological Studies. "Study connects dots between genes, human behavior." ScienceDaily. www.sciencedaily.com/releases/2013/11/131127170135.htm (accessed July 25, 2014).

Share This




More Health & Medicine News

Friday, July 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

New Painkiller Designed To Discourage Abuse: Will It Work?

New Painkiller Designed To Discourage Abuse: Will It Work?

Newsy (July 24, 2014) The FDA approved Targiniq ER on Wednesday, a painkiller designed to keep users from abusing it. Like any new medication, however, it has doubters. Video provided by Newsy
Powered by NewsLook.com
Doctor At Forefront Of Fighting Ebola Outbreak Gets Ebola

Doctor At Forefront Of Fighting Ebola Outbreak Gets Ebola

Newsy (July 24, 2014) Sheik Umar Khan has treated many of the people infected in the Ebola outbreak, and now he's become one of them. Video provided by Newsy
Powered by NewsLook.com
Condemned Man's US Execution Takes Nearly Two Hours

Condemned Man's US Execution Takes Nearly Two Hours

AFP (July 24, 2014) America's death penalty debate raged Thursday after it took nearly two hours for Arizona to execute a prisoner who lost a Supreme Court battle challenging the experimental lethal drug cocktail. Duration: 00:55 Video provided by AFP
Powered by NewsLook.com
Can Watching TV Make You Feel Like A Failure?

Can Watching TV Make You Feel Like A Failure?

Newsy (July 24, 2014) A study by German researchers claims watching TV while you're stressed out can make you feel guilty and like a failure. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

    Health News

      Environment News

        Technology News



          Save/Print:
          Share:

          Free Subscriptions


          Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

          Get Social & Mobile


          Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

          Have Feedback?


          Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
          Mobile: iPhone Android Web
          Follow: Facebook Twitter Google+
          Subscribe: RSS Feeds Email Newsletters
          Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins