Featured Research

from universities, journals, and other organizations

Brain neurons subtract images, use differences

Date:
December 17, 2013
Source:
Ruhr-University Bochum
Summary:
Ten million bits -- that's the information volume transmitted every second with every quick eye movement from the eye to the cerebrum. Researchers describe the way those data are processed by the primary visual cortex, the entry point for the visual information into the brain. Deploying novel optical imaging methods, they demonstrated that the brain does not always transmit the entire image information. Rather, it uses the differences between current and previously viewed images.

Data compression in the brain: When the primary visual cortex processes sequences of complete images and images with missing elements – here vertical contours – it “subtracts” the images from each other. Thereby, the brain computes the differences between the images. Under certain circumstances the neurons forward these image differences (bottom) rather than the entire image information (upper left).
Credit: Ruhr-University Bochum

Researchers have hitherto assumed that information supplied by the sense of sight was transmitted almost in its entirety from its entry point to higher brain areas, across which visual sensation is generated. "It was therefore a surprise to discover that the data volumes are considerably reduced as early as in the primary visual cortex, the bottleneck leading to the cerebrum," says PD Dr Dirk Jancke from the Institute for Neural Computation at the Ruhr-Universität. "We intuitively assume that our visual system generates a continuous stream of images, just like a video camera. However, we have now demonstrated that the visual cortex suppresses redundant information and saves energy by frequently forwarding image differences."

Related Articles


Plus or minus: the brain's two coding strategies

The researchers recorded the neurons' responses to natural image sequences, for example vegetation landscapes or buildings. They created two versions of the images: a complete one and one in which they had systematically removed certain elements, specifically vertical or horizontal contours. If the time elapsing between the individual images was short, i.e. 30 milliseconds, the neurons represented complete image information. That changed when the time elapsing in the sequences was longer than 100 milliseconds. Now, the neurons represented only those elements that were new or missing, namely image differences. "When we analyse a scene, the eyes perform very fast miniature movements in order to register the fine details," explains Nora Nortmann, postgraduate student at the Institute of Cognitive Science at the University of Osnabrück and the RUB work group Optical Imaging. The information regarding those details are forwarded completely and immediately by the primary visual cortex. "If, on the other hand, the time elapsing between the gaze changes is longer, the cortex codes only those aspects in the images that have changed," continues Nora Nortmann. Thus, certain image sections stand out and interesting spots are easier to detect, as the researchers speculate.

"Our brain is permanently looking into the future"

This study illustrates how activities of visual neurons are influenced by past events. "The neurons build up a short-term memory that incorporates constant input," explains Dirk Jancke. However, if something changes abruptly in the perceived image, the brain generates a kind of error message on the basis of the past images. Those signals do not reflect the current input, but the way the current input deviates from the expectations. Researchers have hitherto postulated that this so-called predictive coding only takes place in higher brain areas. "We demonstrated that the principle applies for earlier phases of cortical processing, too," concludes Jancke. "Our brain is permanently looking into the future and comparing current input with the expectations that arose based on past situations."

Observing brain activities in millisecond range

In order to monitor the dynamics of neuronal activities in the brain in the millisecond range, the scientists used voltage-dependent dyes. Those substances fluoresce when neurons receive electrical impulses and become active. Thanks to a high-resolution camera system and the subsequent computer-aided analysis, the neuronal activity can be measured across a surface of several square millimetres. The result is a temporally and spatially precise film of transmission processes within neuronal networks.


Story Source:

The above story is based on materials provided by Ruhr-University Bochum. Note: Materials may be edited for content and length.


Journal Reference:

  1. N. Nortmann, S. Rekauzke, S. Onat, P. Konig, D. Jancke. Primary Visual Cortex Represents the Difference Between Past and Present. Cerebral Cortex, 2013; DOI: 10.1093/cercor/bht318

Cite This Page:

Ruhr-University Bochum. "Brain neurons subtract images, use differences." ScienceDaily. ScienceDaily, 17 December 2013. <www.sciencedaily.com/releases/2013/12/131217104240.htm>.
Ruhr-University Bochum. (2013, December 17). Brain neurons subtract images, use differences. ScienceDaily. Retrieved December 22, 2014 from www.sciencedaily.com/releases/2013/12/131217104240.htm
Ruhr-University Bochum. "Brain neurons subtract images, use differences." ScienceDaily. www.sciencedaily.com/releases/2013/12/131217104240.htm (accessed December 22, 2014).

Share This


More From ScienceDaily



More Mind & Brain News

Monday, December 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Brain-Dwelling Tapeworm Reveals Genetic Secrets

Brain-Dwelling Tapeworm Reveals Genetic Secrets

Reuters - Innovations Video Online (Dec. 22, 2014) — Cambridge scientists have unravelled the genetic code of a rare tapeworm that lived inside a patient's brain for at least four year. Researchers hope it will present new opportunities to diagnose and treat this invasive parasite. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Researchers Test Colombian Village With High Alzheimer's Rates

Researchers Test Colombian Village With High Alzheimer's Rates

AFP (Dec. 19, 2014) — In Yarumal, a village in N. Colombia, Alzheimer's has ravaged a disproportionately large number of families. A genetic "curse" that may pave the way for research on how to treat the disease that claims a new victim every four seconds. Duration: 02:42 Video provided by AFP
Powered by NewsLook.com
Double-Amputee Becomes First To Move Two Prosthetic Arms With His Mind

Double-Amputee Becomes First To Move Two Prosthetic Arms With His Mind

Buzz60 (Dec. 19, 2014) — A double-amputee makes history by becoming the first person to wear and operate two prosthetic arms using only his mind. Jen Markham has the story. Video provided by Buzz60
Powered by NewsLook.com
Prenatal Exposure To Pollution Might Increase Autism Risk

Prenatal Exposure To Pollution Might Increase Autism Risk

Newsy (Dec. 18, 2014) — Harvard researchers found children whose mothers were exposed to high pollution levels in the third trimester were twice as likely to develop autism. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins