Featured Research

from universities, journals, and other organizations

The entropy of nations: Global energy inequality lessens, but for how long?

Date:
January 3, 2014
Source:
Joint Quantum Institute
Summary:
Inequality in the way nations consume energy has been lessening in recent years. An underlying thermodynamic process seems to be at work.

This is a plot of the accumulative capita energy consumption versus accumulative population for four different years: 1980 (blue curve), 1990 (brown), 2000 (green), 2010 (red) and idealized exponential (black).
Credit: Yakovenko

The 18th century writer Adam Smith provided a workable metaphor for the way society utilizes resources. In his book "The Wealth of Nations," he argued that even as individuals strive, through personal industry, to maximize their advantage in life, they inadvertently contribute -- as if under the influence of a "hidden hand" -- to an aggregate disposition of wealth. Well, if Smith were a physicist and alive in the 21st century he might be tempted to compare people or nations to molecules and to replace the phrase "hidden hand" with "thermodynamic process."

Related Articles


Exponential Behavior

Victor Yakovenko, a scientist at the Joint Quantum Institute, studies the parallels between nations and molecules. The distribution of energies among molecules in a gas and the distribution of per-capita energy consumption among nations both obey an exponential law. That is, the likelihood of having a certain energy value is proportional to e^(-E/kT), where T is the temperature and k is a proportionality factor called Boltzmann's constant. ("Temperature" here is taken to be the average national per-capita energy consumption in the world.)

Studies of world energy consumption often feature plots of energy consumption or population over time. Yakovenko and his colleagues prefer to draw out the underlying exponential distribution of national energy use by plotting the fraction of world population versus per-capita consumption.

The JQI researchers draw on data from the U.S. Energy Information Administration (EIA). It covers the period from 1980 to 2010 and includes numbers from more than 200 countries. Their results are published in the Journal "Entropy." A few years ago Yakovenko made a similar study of national per-capita income distributions.

Actually, the consumption data can be graphed in another way, one that illustrates the distributive nature of energy use. In a "Lorenz plot," both the vertical and horizontal axes are dimensionless. The figure shows data curves for four years -- 1980, 1990, 2000, and 2010. The progression of curves is toward a fifth curve which stands for the idealized exponential behavior.

Maximum Entropy

This fifth curve corresponds to a state of maximum entropy in the distribution of energy. Entropy is not merely a synonym for disorder. Rather, entropy is a measure of the number of different ways a system can exist. If, for example, $100 was to be divided among ten people, total equality would dictate that each person received $10. In the figure, this is represented by the solid diagonal line. Maximum inequality would be equivalent to giving all $100 to one person. This would be represented by a curve that hugged the horizontal axis and then proceeded straight up the rightmost vertical axis.

Statistically, both of these scenarios are rather unlikely since they correspond to unique situations. The bulk of possible divisions of $100 would look more like this example: person 1 gets $27, person 2 gets $15, and so forth down to person 10, who receives only $3. The black curve in the figure represents this middle case, where, in the competition for scarce energy resources, neither total equality nor total inequality reigns.

Of course, the labels along the curves are a stark reminder that some nations get much more than the average and some nations much less. In the figure the slope of the curve at any one point corresponds to the per-capita energy consumption. So the upper right of each curve is inhabited by the high-consuming nations: USA, Russia, France, UK. And the lower-left, lower-slope positions on the curve include Brazil and India. The movement of China upwards on the curve is the most dramatic change over the past 40 years.

Inequality

The inequality between the haves and have-nots is often characterized by a factor called the Gini coefficient, or G (named for Italian sociologist Corrado Gini), defined as area between the Lorenz curve and the solid diagonal line divided by half the area beneath the diagonal line. G is then somewhere between 0 and 1, where 0 corresponds to perfect equality and 1 to perfect inequality. The curve corresponding to the maximum-entropy condition, has a G value of 0.5.

The JQI scientists calculated and graphed G over time, showing how G has dropped over the years. In other words, inequality in energy consumption among the nations has been falling. Many economists attribute this development as a result of increased globalization in trade. And as if to underscore the underlying thermodynamic nature of the flow of commodities, a recent study by Branko Milanovic of the World Bank features a Gini curve very similar to that of the JQI curve. However, he was charting the decline of global income inequality by tracking the a parameter called purchasing power parity (PPP) among nations.

Can It Continue?

The JQI curve suggests that the trend toward lesser inequality in energy consumption will start stalling out, as the energy consumption distribution begins to approach full exponential behavior. Is this because of the inexorable applicability of the laws of thermodynamics to national energy consumption? Just as with gas molecules, where some molecules are "rich" (possess high energy) and others "poor," are some nations destined to be rich and others poor?

Maybe not. Professor Yakovenko believes that one obvious way to alter the circumstances of energy distribution expressed in the figures above is the further development of renewable sources of energy. "These graphs apply to a well-mixed, globalized world, where a finite pool of fossil fuels is redistributable on a global scale. If the world switches to locally-produced and locally-consumed renewable energy and stops reshuffling the deck of cards (fossil fuels), then the laws of probability would not apply, and inequality can be lowered further. After all, the Sun shines roughly equally on everybody."

Yakovenko adds that for an exponential distribution what he calls "the rule of thirds" will be in effect. This means the top 1/3 of the world population will consume 2/3 of the total produced energy while the bottom 2/3 of the population will consume only 1/3 of the total energy.


Story Source:

The above story is based on materials provided by Joint Quantum Institute. Note: Materials may be edited for content and length.


Journal Reference:

  1. Scott Lawrence, Qin Liu, Victor Yakovenko. Global Inequality in Energy Consumption from 1980 to 2010. Entropy, 2013; 15 (12): 5565 DOI: 10.3390/e15125565

Cite This Page:

Joint Quantum Institute. "The entropy of nations: Global energy inequality lessens, but for how long?." ScienceDaily. ScienceDaily, 3 January 2014. <www.sciencedaily.com/releases/2014/01/140103204426.htm>.
Joint Quantum Institute. (2014, January 3). The entropy of nations: Global energy inequality lessens, but for how long?. ScienceDaily. Retrieved October 25, 2014 from www.sciencedaily.com/releases/2014/01/140103204426.htm
Joint Quantum Institute. "The entropy of nations: Global energy inequality lessens, but for how long?." ScienceDaily. www.sciencedaily.com/releases/2014/01/140103204426.htm (accessed October 25, 2014).

Share This



More Science & Society News

Saturday, October 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Ebola Protective Suits Being Made in China

Ebola Protective Suits Being Made in China

AFP (Oct. 24, 2014) A factory in China is busy making Ebola protective suits for healthcare workers and others fighting the spread of the virus. Duration: 00:38 Video provided by AFP
Powered by NewsLook.com
WHO: Millions of Ebola Vaccine Doses by 2015

WHO: Millions of Ebola Vaccine Doses by 2015

AP (Oct. 24, 2014) The World Health Organization said on Friday that millions of doses of two experimental Ebola vaccines could be ready for use in 2015 and five more experimental vaccines would start being tested in March. (Oct. 24) Video provided by AP
Powered by NewsLook.com
Microsoft Riding High On Strong Surface, Cloud Performance

Microsoft Riding High On Strong Surface, Cloud Performance

Newsy (Oct. 24, 2014) Microsoft's Q3 earnings showed its tablets and cloud services are really hitting their stride. Video provided by Newsy
Powered by NewsLook.com
EU Gets Climate Deal, UK PM Gets Knock

EU Gets Climate Deal, UK PM Gets Knock

Reuters - Business Video Online (Oct. 24, 2014) EU leaders achieve a show of unity by striking a compromise deal on carbon emissions. But David Cameron's bid to push back EU budget contributions gets a slap in the face as the European Commission demands an extra 2bn euros. David Pollard reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Science & Society

Business & Industry

Education & Learning

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins