Featured Research

from universities, journals, and other organizations

Joining up computer memory

Date:
January 22, 2014
Source:
The Agency for Science, Technology and Research (A*STAR)
Summary:
Innovative electrodes allow new computer memory technologies to be compatible with existing circuitry. The computing industry faces constant demands to provide faster access to data and reduce power consumption. As current memory systems cannot meet these demands indefinitely, it is essential to develop entirely new technologies. One strong contender is resistive random access memory (RRAM), which stores binary information by switching a dielectric material between conducting and non-conducting states.

Innovative electrodes allow new computer memory technologies to be compatible with existing circuitry.

The computing industry faces constant demands to provide faster access to data and reduce power consumption. As current memory systems cannot meet these demands indefinitely, it is essential to develop entirely new technologies. One strong contender is resistive random access memory (RRAM), which stores binary information by switching a dielectric material between conducting and non-conducting states.

A seamless transition to this new technology requires that RRAM memory cells be compatible with existing electronics, which are usually based on complementary metal oxide semiconductors (CMOS). Now, Xin Peng Wang and co-workers at the A*STAR Institute of Microelectronics, Singapore, have designed nickel-based electrodes that can couple RRAM to CMOS systems as well as reduce the current required to switch the RRAM between memory states1.

"One of the current most dominant memory systems, NAND flash, is expected to reach the limit of its scalability in 2017 or 2018," says Wang. "We need to identify emerging non-volatile memory systems with higher densities, to make up the market. Recently, RRAM has attracted lots of attention due to its fast programming and erasing speeds, high endurance and good retention of data."

Preventing neighboring RRAM cells from interfering with one another requires each cell to contain a selector made from a diode or transistor. Diode selectors have proved difficult to implement, therefore Wang and co-workers aimed to make RRAM stacks that were compatible with CMOS transistors.

To build the prototype RRAM cells, the researchers used three layers. They used physical vapor deposition to create a bottom electrode of nickel silicide or nickel germanosilicide, before adding a central dielectric switching layer of hafnium oxide, and a final top electrode of titanium nitride.

The researchers found that they could quickly and reliably switch the memory state of their cells, using very low operating currents. They suggest that the switching is enhanced by oxidation and reduction of nickel at the interfacial layer between the electrode and the dielectric. By providing more mobile oxygen species, these reactions might accelerate the formation and rupture of conductive filaments.

"Our electrodes can be easily formed on the source or drain terminal of a transistor," says Wang. "In fact, our design effectively uses a CMOS transistor source or drain directly as the bottom electrode in a RRAM cell. This can lower the total cost and improve the scalability."

In future, Wang and co-workers hope to shrink their nickel-based RRAM cells to a practical circuit scale to bring this promising technology into production.

The A*STAR-affiliated researchers contributing to this research are from the Institute of Microelectronics.


Story Source:

The above story is based on materials provided by The Agency for Science, Technology and Research (A*STAR). Note: Materials may be edited for content and length.


Journal Reference:

  1. X. P. Wang, Z. Fang, Z. X. Chen, A. R. Kamath, L. J. Tang, G.-Q. Lo, D.-L. Kwong. Ni-Containing Electrodes for Compact Integration of Resistive Random Access Memory With CMOS. IEEE Electron Device Letters, 2013; 34 (4): 508 DOI: 10.1109/LED.2013.2245627

Cite This Page:

The Agency for Science, Technology and Research (A*STAR). "Joining up computer memory." ScienceDaily. ScienceDaily, 22 January 2014. <www.sciencedaily.com/releases/2014/01/140122092445.htm>.
The Agency for Science, Technology and Research (A*STAR). (2014, January 22). Joining up computer memory. ScienceDaily. Retrieved April 20, 2014 from www.sciencedaily.com/releases/2014/01/140122092445.htm
The Agency for Science, Technology and Research (A*STAR). "Joining up computer memory." ScienceDaily. www.sciencedaily.com/releases/2014/01/140122092445.htm (accessed April 20, 2014).

Share This



More Computers & Math News

Sunday, April 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Nintendo Changed Gaming World, but Its Future Uncertain: Upstone

Nintendo Changed Gaming World, but Its Future Uncertain: Upstone

AFP (Apr. 19, 2014) The Nintendo Game Boy celebrates its 25th anniversary Monday and game expert Stephen Upstone says the console can be credited with creating a trend towards handheld gaming devices. Duration: 01:21 Video provided by AFP
Powered by NewsLook.com
Why Did Nike Fire Most Of Its Nike FuelBand Team?

Why Did Nike Fire Most Of Its Nike FuelBand Team?

Newsy (Apr. 19, 2014) Nike fired most of its Digital Sport hardware team, the group behind Nike's FuelBand device. Could Apple or an overcrowded market be behind layoffs? Video provided by Newsy
Powered by NewsLook.com
Nearly Two Weeks On, The Internet Copes With Heartbleed

Nearly Two Weeks On, The Internet Copes With Heartbleed

Newsy (Apr. 19, 2014) The Internet is taking important steps in patching the vulnerabilities Heartbleed highlighted, but those preventive measures carry their own costs. Video provided by Newsy
Powered by NewsLook.com
Facebook To Share Nearby Friends Data With Advertisers

Facebook To Share Nearby Friends Data With Advertisers

Newsy (Apr. 19, 2014) A Facebook spokesperson has confirmed the company will use GPS data from the new Nearby Friends feature for advertising sometime in the future. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins