Featured Research

from universities, journals, and other organizations

'Envy-free' algorithm developed for settling disputes from divorce to inheritance

Date:
February 3, 2014
Source:
New York University
Summary:
Whether it’s season tickets to Green Bay Packers’ games or silver place settings, divorce and inheritance have bred protracted disputes over the assignment of belongings. But, now, a trio of researchers has found a method for resolving such conflicts in an envy-free way.

Whether it's season tickets to Green Bay Packers' games or silver place settings, divorce and inheritance have bred protracted disputes over the assignment of belongings. But, now, a trio of researchers has found a method for resolving such conflicts in an envy-free way.

The paper, authored by New York University's Steven Brams, Wilfrid Laurier University's D. Marc Kilgour, and the University of Graz's Christian Klamler and published this month in Notices of the American Mathematical Society, outlines a pair of algorithms that are based on the self-identified priorities of the parties.

"The problem of fairly dividing a divisible good, such as cake or land, between two people probably goes back to the dawn of civilization," write the authors.

They point out that dividing indivisible goods, like the marital property in a divorce, is harder, adding, "Unlike more demanding fair-division algorithms, which ask players to give more detailed information or make more difficult comparisons, our algorithms are easy to apply and, therefore, eminently practicable."

Their work is based on principles of fairness. In the first algorithm, the two players make simultaneous or independent choices in sequence, starting with their most-preferred items and progressively descending to less-preferred items that have not already been allocated. In the second, the players submit their complete preference rankings in advance to a referee or arbitrator.

This algorithm is "envy free" because each party prefers each of its items to a corresponding item of the other party. A potential conflict arises, of course, when the two parties desire the same item at the same time. For example, assume players A and B rank four items, going from left to right, as follows:

A: 1 2 3 4 B: 2 3 4 1

Now, if we give A item 1 and B item 2 (their most preferred), the next unallocated item on both their lists is item 3. Who should get it? The algorithm gives it to A and gives item 4 to B, which is an envy-free allocation because each player prefers its items to the other player's:

A prefers item 1 to 2 and item 3 to 4 B prefers item 2 to 3 and item 4 to 1

Not only does each party prefer its pair of items to the other's, but there is no alternative allocation that both parties would prefer, which makes it efficient. Although such an efficient, envy-free allocation is not always possible, the algorithm finds one that comes as close to this ideal as can be achieved.


Story Source:

The above story is based on materials provided by New York University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Steven J. Brams, D. Marc Kilgour, Christian Klamler. Two-Person Fair Division of Indivisible Items: An Efficient, Envy-Free Algorithm. Notices of the American Mathematical Society, 2014; 61 (02): 130 DOI: 10.1090/noti1075

Cite This Page:

New York University. "'Envy-free' algorithm developed for settling disputes from divorce to inheritance." ScienceDaily. ScienceDaily, 3 February 2014. <www.sciencedaily.com/releases/2014/02/140203100957.htm>.
New York University. (2014, February 3). 'Envy-free' algorithm developed for settling disputes from divorce to inheritance. ScienceDaily. Retrieved September 21, 2014 from www.sciencedaily.com/releases/2014/02/140203100957.htm
New York University. "'Envy-free' algorithm developed for settling disputes from divorce to inheritance." ScienceDaily. www.sciencedaily.com/releases/2014/02/140203100957.htm (accessed September 21, 2014).

Share This



More Computers & Math News

Sunday, September 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

What This MIT Sensor Could Mean For The Future Of Robotics

What This MIT Sensor Could Mean For The Future Of Robotics

Newsy (Sep. 20, 2014) MIT researchers developed a light-based sensor that gives robots 100 times the sensitivity of a human finger, allowing for "unprecedented dexterity." Video provided by Newsy
Powered by NewsLook.com
How To Protect Your Data In The Still-Vulnerable iOS 8

How To Protect Your Data In The Still-Vulnerable iOS 8

Newsy (Sep. 20, 2014) One security researcher says despite Apple's efforts to increase security in iOS 8, it's still vulnerable to law enforcement data-transfer techniques. Video provided by Newsy
Powered by NewsLook.com
How Much Privacy Protection Will Google's Android L Provide?

How Much Privacy Protection Will Google's Android L Provide?

Newsy (Sep. 19, 2014) Google's local encryption will make it harder for law enforcement or malicious actors to access the contents of devices running Android L. Video provided by Newsy
Powered by NewsLook.com
Virtual Reality Headsets Unveiled at Tokyo Game Show

Virtual Reality Headsets Unveiled at Tokyo Game Show

AFP (Sep. 18, 2014) Several companies unveiled virtual reality headsets at the Tokyo Game Show, Asia's largest digital entertainment exhibition. Duration: 00:48 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins