Featured Research

from universities, journals, and other organizations

The physics of curly hair: Researchers develop first detailed model for a 3-D strand of curly hair

Date:
February 12, 2014
Source:
Massachusetts Institute of Technology
Summary:
The heroes and villains in animated films tend to be on opposite ends of the moral spectrum. But they're often similar in their hair, which is usually extremely rigid or -- if it moves at all -- is straight and swings to and fro. It's rare to see an animated character with bouncy, curly hair, since computer animators don't have a simple mathematical means for describing it. But now, researchers have developed the first detailed model for a 3-D strand of curly hair.

Photo: Girl with curly hair (stock image). Inset: Shown here are flexible segments of tubing that James Miller made with varying degrees of curliness. These were used for the lab experiment portions of the research.
Credit: Photo by © elavuk81 / Fotolia; Inset credit: James Miller and Pedro Reis

The heroes and villains in animated films tend to be on opposite ends of the moral spectrum. But they're often similar in their hair, which is usually extremely rigid or -- if it moves at all -- is straight and swings to and fro. It's rare to see an animated character with bouncy, curly hair, since computer animators don't have a simple mathematical means for describing it.

Related Articles


However, change may be coming soon to a theater near you: In a paper appearing in the Feb. 13 issue of Physical Review Letters, researchers at MIT and the Université Pierre et Marie Curie in Paris provide the first detailed model for the 3-D shape of a strand of curly hair.

This work could have applications in the computer animation film industry, but it also could be used by engineers to predict the curve that long steel pipes, tubing, and cable develop after being coiled around a spool for transport. In the field, these materials often act like a stubborn garden hose whose intrinsic curves make it behave in unpredictable ways. In engineering terminology, these items -- and hair -- are all examples of a slender, flexible rod.

Co-authors on the paper are Pedro Reis, an assistant professor in MIT's Department of Civil and Environmental Engineering and Department of Mechanical Engineering; Basile Audoly and Arnaud Lazarus, of the Université Pierre et Marie Curie; and former MIT graduate student James Miller, who is now a research associate at Schlumberger-Doll Research. Miller worked on this project as part of his doctoral thesis research and is lead author of the paper.

"Our work doesn't deal with the collisions of all the hairs on a head, which is a very important effect for animators to control a hairstyle," Reis says. "But it characterizes all the different degrees of curliness of a hair and describes mathematically how the properties of the curl change along the arc length of a hair."

When Reis set out to investigate the natural curvature in flexible rods, he wasn't thinking of hair. But as he studied several small flexible, curved segments of tubing suspended from a structure in his lab, he realized they weren't so different from strands of curly hair hanging on a head. That's when he contacted Audoly, who had previously developed a theory to explain the 2-D shape of human hair.

Using lab experimentation, computer simulation, and theory -- "the perfect triangle of science," Reis says -- the team identified the main parameters for curly hair and simplified them into two dimensionless parameters for curvature (relating to the ratio of curvature and length) and weight (relating to the ratio of weight and stiffness). Given curvature, length, weight, and stiffness, their model will predict the shape of a hair, steel pipe, or Internet cable suspended under its own weight.

As a strand of hair curls up from the bottom, its 2-D hook grows larger until it reaches a point where it becomes unstable under its own weight and falls out of plane to become a 3-D helix. Reis and co-authors describe the 3-D curl as a localized helix, where only a portion of the strand is curled, or a global helix, if the curliness extends the entire length up to the head.

A curl can change phase -- from 2-D to 3-D local helix to 3-D global helix, and back again -- if its parameters change. Because a strand of hair is weighted from the bottom by gravity, the top of the strand has more weight under it than the tip, which has none. Thus, if the weight on a hair is too great for its innate curliness, the curl will fail and become either straight or helical, depending on the strand's length and stiffness.

For the curvature study, Miller created flexible, thin rods using molds as small as a bottle of Tabasco sauce and as large as the columns in MIT's Lobby 7 (about a meter in diameter). He injected a rubber-like material inside hollow flexible tubing wrapped around these molds. Once the rubber material cured and the tubing was cut away, Miller and Reis had flexible polyvinyl thin rods whose natural curvature was based on the size of the object around which they had been wrapped.

The researchers' use of dimensionless numbers to describe innate curvature means the equation will hold true at all scales. Even with lengths measured in kilometers, the steel piping used by the oil industry is flexible enough to be spooled. "We think of steel pipes as being nice and straight but usually at some point they're getting wrapped around something," Miller says. "And at large dimensions, they're so flexible that it's like you and I dealing with a limp spaghetti noodle."

"The mathematician [Leonhard] Euler first derived the equation for a slender elastic body -- like a hair strand -- in 1744," Audoly says. "Even though the equations are well-known, they have no explicit solution and, as a result, it is challenging to connect these equations with real shapes."

"The fact that I am bald and worked on this problem for several years became a nice running joke in our lab," Reis says. "But joking aside, for me the importance of the work is being able to take the intrinsic natural curvature of rods into account for this class of problems, which can dramatically affect their mechanical behavior. Curvature can delay undesirable instability that happens at higher loads or torsion, and this is an effect that engineers need to be able to understand and predict."


Story Source:

The above story is based on materials provided by Massachusetts Institute of Technology. The original article was written by Denise Brehm. Note: Materials may be edited for content and length.


Cite This Page:

Massachusetts Institute of Technology. "The physics of curly hair: Researchers develop first detailed model for a 3-D strand of curly hair." ScienceDaily. ScienceDaily, 12 February 2014. <www.sciencedaily.com/releases/2014/02/140212132809.htm>.
Massachusetts Institute of Technology. (2014, February 12). The physics of curly hair: Researchers develop first detailed model for a 3-D strand of curly hair. ScienceDaily. Retrieved November 23, 2014 from www.sciencedaily.com/releases/2014/02/140212132809.htm
Massachusetts Institute of Technology. "The physics of curly hair: Researchers develop first detailed model for a 3-D strand of curly hair." ScienceDaily. www.sciencedaily.com/releases/2014/02/140212132809.htm (accessed November 23, 2014).

Share This


More From ScienceDaily



More Matter & Energy News

Sunday, November 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Toyota's Hydrogen Fuel-Cell Green Car Soon Available in the US

Toyota's Hydrogen Fuel-Cell Green Car Soon Available in the US

AFP (Nov. 21, 2014) — Toyota presented its hydrogen fuel-cell compact car called "Mirai" to US consumers at the Los Angeles auto show. The car should go on sale in 2015 for around $60.000. It combines stored hydrogen with oxygen to generate its own power. Duration: 01:18 Video provided by AFP
Powered by NewsLook.com
Google Announces Improvements To Balloon-Borne Wi-Fi Project

Google Announces Improvements To Balloon-Borne Wi-Fi Project

Newsy (Nov. 21, 2014) — In a blog post, Google said its balloons have traveled 3 million kilometers since the start of Project Loon. Video provided by Newsy
Powered by NewsLook.com
Raw: Paralyzed Marine Walks With Robotic Braces

Raw: Paralyzed Marine Walks With Robotic Braces

AP (Nov. 21, 2014) — Marine Corps officials say a special operations officer left paralyzed by a sniper's bullet in Afghanistan walked using robotic leg braces in a ceremony to award him a Bronze Star. (Nov. 21) Video provided by AP
Powered by NewsLook.com
British 'Bio-Bus' Is Powered By Human Waste

British 'Bio-Bus' Is Powered By Human Waste

Buzz60 (Nov. 21, 2014) — British company GENeco debuted what its calling the Bio-Bus, a bus fueled entirely by biomethane gas produced from food scraps and sewage. Jen Markham explains. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins