Featured Research

from universities, journals, and other organizations

Understanding heart failure at the cellular level

Date:
February 19, 2014
Source:
Biophysical Society
Summary:
Scientists have provided an unprecedented glimpse of what happens to the heart during an "infarction" -- a heart attack -- by looking at how the attack affects electrical activity and calcium release in heart cells.

A team of researchers at the University of Florence in Italy and the University of Connecticut Health Center have used a multidisciplinary approach to provide an unprecedented glimpse of what happens to the heart during an "infarction" -- a heart attack -- by looking at how the attack affects electrical activity and calcium release in heart cells.

"Thanks to this method, we found electrical abnormalities and non-homogenous calcium release across failing cells," explained Claudia Crocini, who will be presenting the research at the 58th Annual Biophysical Society Meeting, taking place in San Francisco from Feb. 15-19. "Our findings provide insight on the relationship between heart failure and asynchronous calcium release, a major determinant of cardiac contractile dysfunction and arrhythmias."

Heart disease is the leading cause of death in the United States, accounting for a quarter of all American deaths each year and costing the healthcare system more than $100 billion annually. According to the American Heart Association, there are 5.7 million Americans who are living with heart failure and 670,000 new cases are diagnosed annually.

Seeking to understand what happens to heart cells during heart failure, Crocini and her colleagues took a multidisciplinary approach involving physicists and biologists that made it possible to study the two main features of cardiac cells, voltage and calcium release, during heart failure with an unprecedented temporal and spatial resolution.

To clarify the link between electrical abnormalities and calcium-dependent arrhythmias, the team combined the advantages of an ultrafast random access multi-photon (RAMP) microscope with a double staining approach to optically record action potential and, simultaneously, the corresponding local Ca2+-transient in different positions across the cardiac cells.

Both beat-to-beat and spatial variability of Ca2+-transient kinetics were increased in heart failure. Through simultaneous recording of AP and Ca2+-transient the team was able to probe the spatio-temporal variability of Ca2+-release, disclosing an unexpected uncoupling between membrane depolarization and Ca2+-release in heart failure. "While there is not a direct bench-to-bedside connection for this research, it is only by studying the basic pathomechanisms of heart failure that we can even begin to think about new diagnostic or treatment approaches," said Crocini.


Story Source:

The above story is based on materials provided by Biophysical Society. Note: Materials may be edited for content and length.


Cite This Page:

Biophysical Society. "Understanding heart failure at the cellular level." ScienceDaily. ScienceDaily, 19 February 2014. <www.sciencedaily.com/releases/2014/02/140219075113.htm>.
Biophysical Society. (2014, February 19). Understanding heart failure at the cellular level. ScienceDaily. Retrieved September 23, 2014 from www.sciencedaily.com/releases/2014/02/140219075113.htm
Biophysical Society. "Understanding heart failure at the cellular level." ScienceDaily. www.sciencedaily.com/releases/2014/02/140219075113.htm (accessed September 23, 2014).

Share This



More Health & Medicine News

Tuesday, September 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Ebola Costs Keep Mounting

Ebola Costs Keep Mounting

Reuters - Business Video Online (Sep. 23, 2014) The WHO has warned up to 20,000 people could be infected with Ebola over the next few weeks. As Sonia Legg reports, the implications for the West African countries suffering from the disease are huge. Video provided by Reuters
Powered by NewsLook.com
Ebola Cases Could Reach 1.4 Million Within 4 Months

Ebola Cases Could Reach 1.4 Million Within 4 Months

Newsy (Sep. 23, 2014) Health officials warn that without further intervention, the number of Ebola cases in Liberia and Sierra Leone could reach 1.4 million by January. Video provided by Newsy
Powered by NewsLook.com
WHO: Ebola Cases to Triple in Weeks Without Drastic Action

WHO: Ebola Cases to Triple in Weeks Without Drastic Action

AFP (Sep. 23, 2014) The number of Ebola infections will triple to 20,000 by November, soaring by thousands every week if efforts to stop the outbreak are not stepped up radically, the WHO warned in a study on Tuesday. Duration: 01:01 Video provided by AFP
Powered by NewsLook.com
5 Ways Men Can Prevent Most Heart Attacks

5 Ways Men Can Prevent Most Heart Attacks

Newsy (Sep. 23, 2014) No surprise here: A recent study says men can reduce their risk of heart attack by maintaining a healthy lifestyle, which includes daily exercise. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins