Featured Research

from universities, journals, and other organizations

Statistics research could build consensus around climate predictions

Date:
February 19, 2014
Source:
Society for Industrial and Applied Mathematics
Summary:
Vast amounts of data related to climate change are being compiled by researchers worldwide with varying climate projections. This requires combining information across data sets to arrive at a consensus regarding future climate estimates. Scientists propose a statistical hierarchical Bayesian model that consolidates climate change information from observation-based data sets and climate models.

Regional analysis for climate change assessment.
Credit: Melissa Bukovsky, National Center for Atmospheric Research (NCAR/IMAGe)

Vast amounts of data related to climate change are being compiled by research groups all over the world. Data from these many and varied sources results in different climate projections; hence, the need arises to combine information across data sets to arrive at a consensus regarding future climate estimates.

In a paper published last December in the SIAM Journal on Uncertainty Quantification, authors Matthew Heaton, Tamara Greasby, and Stephan Sain propose a statistical hierarchical Bayesian model that consolidates climate change information from observation-based data sets and climate models.

"The vast array of climate data -- from reconstructions of historic temperatures and modern observational temperature measurements to climate model projections of future climate -- seems to agree that global temperatures are changing," says author Matthew Heaton. "Where these data sources disagree, however, is by how much temperatures have changed and are expected to change in the future. Our research seeks to combine many different sources of climate data, in a statistically rigorous way, to determine a consensus on how much temperatures are changing."

Using a hierarchical model, the authors combine information from these various sources to obtain an ensemble estimate of current and future climate along with an associated measure of uncertainty. "Each climate data source provides us with an estimate of how much temperatures are changing. But, each data source also has a degree of uncertainty in its climate projection," says Heaton. "Statistical modeling is a tool to not only get a consensus estimate of temperature change but also an estimate of our uncertainty about this temperature change."

The approach proposed in the paper combines information from observation-based data, general circulation models (GCMs) and regional climate models (RCMs).

Observation-based data sets, which focus mainly on local and regional climate, are obtained by taking raw climate measurements from weather stations and applying it to a grid defined over the globe. This allows the final data product to provide an aggregate measure of climate rather than be restricted to individual weather data sets. Such data sets are restricted to current and historical time periods. Another source of information related to observation-based data sets are reanalysis data sets in which numerical model forecasts and weather station observations are combined into a single gridded reconstruction of climate over the globe.

GCMs are computer models which capture physical processes governing the atmosphere and oceans to simulate the response of temperature, precipitation, and other meteorological variables in different scenarios. While a GCM portrayal of temperature would not be accurate to a given day, these models give fairly good estimates for long-term average temperatures, such as 30-year periods, which closely match observed data. A big advantage of GCMs over observed and reanalyzed data is that GCMs are able to simulate climate systems in the future.

RCMs are used to simulate climate over a specific region, as opposed to global simulations created by GCMs. Since climate in a specific region is affected by the rest of Earth, atmospheric conditions such as temperature and moisture at the region's boundary are estimated by using other sources such as GCMs or reanalysis data.

By combining information from multiple observation-based data sets, GCMs and RCMs, the model obtains an estimate and measure of uncertainty for the average temperature, temporal trend, as well as the variability of seasonal average temperatures. The model was used to analyze average summer and winter temperatures for the Pacific Southwest, Prairie and North Atlantic regions (seen in the image above) -- regions that represent three distinct climates. The assumption would be that climate models would behave differently for each of these regions. Data from each region was considered individually so that the model could be fit to each region separately.

"Our understanding of how much temperatures are changing is reflected in all the data available to us," says Heaton. "For example, one data source might suggest that temperatures are increasing by 2 degrees Celsius while another source suggests temperatures are increasing by 4 degrees. So, do we believe a 2-degree increase or a 4-degree increase? The answer is probably 'neither' because combining data sources together suggests that increases would likely be somewhere between 2 and 4 degrees. The point is that that no single data source has all the answers. And, only by combining many different sources of climate data are we really able to quantify how much we think temperatures are changing."

While most previous such work focuses on mean or average values, the authors in this paper acknowledge that climate in the broader sense encompasses variations between years, trends, averages and extreme events. Hence the hierarchical Bayesian model used here simultaneously considers the average, linear trend and interannual variability (variation between years). Many previous models also assume independence between climate models, whereas this paper accounts for commonalities shared by various models -- such as physical equations or fluid dynamics -- and correlates between data sets.

"While our work is a good first step in combining many different sources of climate information, we still fall short in that we still leave out many viable sources of climate information," says Heaton. "Furthermore, our work focuses on increases/decreases in temperatures, but similar analyses are needed to estimate consensus changes in other meteorological variables such as precipitation. Finally, we hope to expand our analysis from regional temperatures (say, over just a portion of the U.S.) to global temperatures."


Story Source:

The above story is based on materials provided by Society for Industrial and Applied Mathematics. Note: Materials may be edited for content and length.


Journal Reference:

  1. Matthew J. Heaton, Tamara A. Greasby, Stephan R. Sain. Modeling Uncertainty in Climate Using Ensembles of Regional and Global Climate Models and Multiple Observation-Based Data Sets. SIAM/ASA Journal on Uncertainty Quantification, 2013; 1 (1): 535 DOI: 10.1137/12088505X

Cite This Page:

Society for Industrial and Applied Mathematics. "Statistics research could build consensus around climate predictions." ScienceDaily. ScienceDaily, 19 February 2014. <www.sciencedaily.com/releases/2014/02/140219160408.htm>.
Society for Industrial and Applied Mathematics. (2014, February 19). Statistics research could build consensus around climate predictions. ScienceDaily. Retrieved July 25, 2014 from www.sciencedaily.com/releases/2014/02/140219160408.htm
Society for Industrial and Applied Mathematics. "Statistics research could build consensus around climate predictions." ScienceDaily. www.sciencedaily.com/releases/2014/02/140219160408.htm (accessed July 25, 2014).

Share This




More Computers & Math News

Friday, July 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Mobile App Gives Tour of Battle of Atlanta Sites

Mobile App Gives Tour of Battle of Atlanta Sites

AP (July 25, 2014) Emory University's Center for Digital Scholarship has launched a self-guided mobile tour app to coincide with the 150th anniversary of the Civil War's Battle of Atlanta. (July 25) Video provided by AP
Powered by NewsLook.com
Bill Gates: Health, Agriculture Key to Africa's Development

Bill Gates: Health, Agriculture Key to Africa's Development

AFP (July 24, 2014) Health and agriculture development are key if African countries are to overcome poverty and grow, US software billionaire Bill Gates said Thursday, as he received an honourary degree in Ethiopia. Duration: 00:36 Video provided by AFP
Powered by NewsLook.com
Creative Makeovers for Ugly Cellphone Towers

Creative Makeovers for Ugly Cellphone Towers

AP (July 24, 2014) Mobile phone companies and communities across the country are going to new lengths to disguise those unsightly cellphone towers. From a church bell tower to a flagpole, even a pencil, some towers are trying to make a point. (July 24) Video provided by AP
Powered by NewsLook.com
Robot Parking Valet Creates Stress-Free Travel

Robot Parking Valet Creates Stress-Free Travel

AP (July 23, 2014) 'Ray' the robotic parking valet at Dusseldorf Airport in Germany lets travelers to avoid the hassle of finding a parking spot before heading to the check-in desk. (July 23) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

    Health News

      Environment News

        Technology News



          Save/Print:
          Share:

          Free Subscriptions


          Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

          Get Social & Mobile


          Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

          Have Feedback?


          Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
          Mobile: iPhone Android Web
          Follow: Facebook Twitter Google+
          Subscribe: RSS Feeds Email Newsletters
          Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins