Featured Research

from universities, journals, and other organizations

Internal logic: Eight distinct subnetworks in mouse cerebral cortex

Date:
February 27, 2014
Source:
University of Southern California
Summary:
The mammalian cerebral cortex, long thought to be a dense single interrelated tangle of neural networks, actually has a 'logical' underlying organizational principle. Researchers have identified eight distinct neural subnetworks that together form the connectivity infrastructure of the mammalian cortex, the part of the brain involved in higher-order functions such as cognition, emotion and consciousness.

Fluorescent dyes labeled axons (green) and projection neurons (pink) in the mouse neocortex.
Credit: Courtesy of the USC Institute for Neuroimaging and Informatics

The mammalian cerebral cortex, long thought to be a dense single interrelated tangle of neural networks, actually has a "logical" underlying organizational principle, reveals a study appearing Feb. 27 in the journal Cell.

Related Articles


Researchers have identified eight distinct neural subnetworks that together form the connectivity infrastructure of the mammalian cortex, the part of the brain involved in higher-order functions such as cognition, emotion and consciousness.

"This study is the first comprehensive mapping of the most developed region of the mammalian brain: the cerebral cortex. The cortex is highly complex and made up of many densely interconnected structures, but when you strip it down, is organized into a small number of subnetworks," said senior author Hongwei Dong of the USC Institute for Neuroimaging and Informatics.

The cerebral cortex is the outermost layer of neural tissue in the brain and is one of the most extensively studied brain structures in the field of neuroscience. However, before this study, its underlying organizational principle was still largely unclear.

"Think about it: the brain is built for logic, so its organization must be logical. The brain's architectural organization is arranged such that all of its substructures most efficiently work in conjunction to produce appropriate behaviors, " said Dong, associate professor of neurology at the Keck School of Medicine of USC. "We want to find the code to how the brain is structurally organized."

The study is also a reminder that while there is more data than ever, the quality and reliability of information still matters. In contrast to past patchwork attempts, Dong and his team undertook an effort to directly develop a whole-brain mouse atlas of brain pathways. Across the cortex, they injected fluorescent molecules. These molecules were then transported along the brain's "cellular highways" -- the neuronal pathways -- and meticulously tracked using a high-resolution microscope.

The uniformity and completeness of the scientists' effort across the entire cortex not only provided for a searchable image database of cortical connections, which the researchers are making open-access and publicly available.

It also allowed them to reliably see patterns: the seemingly inscrutable mass of connections in the cerebral cortex is highly organized, consisting of eight distinct subnetworks that are relatively segregated.

"The systematic and comprehensive manner in which the data were collected lent itself to a detailed analysis through which these subnetworks emerged," explained co-lead author Houri Hintiryan of the USC Laboratory of Neuro Imaging.

So that scientists around the world may continue to look for fundamental structural insights, the full, interactive imaging dataset is viewable at Mouse Connectome Project, providing a resource for researchers interested in studying the anatomy and function of cortical networks throughout the brain.

"It really is quite tedious," Dong said of collecting the data, "and labor-intensive, and it requires highly specialized skills and technology. But think of the Human Genome Project and how much it accelerated the process of discovery and the whole field when infrastructures existed for people to share and compare. That was our motivation."

How these subnetworks interact will provide a crucial baseline from which to better understand diseases of "disconnection" such as autism and Alzheimer's Disease, in which the manifestations of symptoms are potentially a result of disordered or damaged connections.

The researchers' map of the mouse cerebral cortex can be compared to data on disease-affected brains, brains in development and genetic information. It will also offer necessary context for some of the particularities of being human, who behaved just like other mammals only a few thousand years ago and who still share most underlying basic behavioral characteristics such as hunger and pain.

"The fundamental logic of mammalian brains is the same, particularly when it comes to basic behaviors such as eating, sleeping, and social behaviors" said Dong, who notes that similar studies in humans have thus far not gotten to the cellular level. "There are lots of organizing principles to brain structures that we are just beginning to understand."

The researchers identified the brain subnetworks based on their high degree of interconnectivity -- though relatively independent, several structures provide communication routes through which the subnetworks interact. Combined with behavioral data from past research and information about subcortical targets, these interconnections imply remarkable functional significance for the subnetworks.

Four of the eight identified subnetworks in the mouse cortex relate to sensation and movement of the body, what the researchers dub somatic sensorimotor. In particular, the researchers identified separate subnetworks for movements in the face, upper limbs, lower limbs and trunk, and whiskers. Together, these networks facilitate motor behaviors such as eating and drinking, reaching and grabbing, locomotion and exploration of the environment.

Two other subnetworks are made up of structures located along the midline of the cerebral cortex. These medial subnetworks seem devoted to the integration of visual, auditory and somatic sensory information, according to the study. Several other structures located along the side of the brain form two lateral subnetworks, one of which potentially serves to regulate the internal status of the body (i.e. taste, hunger, visceral information) and the other as a "mega-integration" subnetwork that allows the interaction of information from nearly the entire cortex.


Story Source:

The above story is based on materials provided by University of Southern California. Note: Materials may be edited for content and length.


Journal Reference:

  1. Brian Zingg, Houri Hintiryan, Lin Gou, MonicaY. Song, Maxwell Bay, MichaelS. Bienkowski, NicholasN. Foster, Seita Yamashita, Ian Bowman, ArthurW. Toga, Hong-Wei Dong. Neural Networks of the Mouse Neocortex. Cell, 2014; 156 (5): 1096 DOI: 10.1016/j.cell.2014.02.023

Cite This Page:

University of Southern California. "Internal logic: Eight distinct subnetworks in mouse cerebral cortex." ScienceDaily. ScienceDaily, 27 February 2014. <www.sciencedaily.com/releases/2014/02/140227125247.htm>.
University of Southern California. (2014, February 27). Internal logic: Eight distinct subnetworks in mouse cerebral cortex. ScienceDaily. Retrieved November 23, 2014 from www.sciencedaily.com/releases/2014/02/140227125247.htm
University of Southern California. "Internal logic: Eight distinct subnetworks in mouse cerebral cortex." ScienceDaily. www.sciencedaily.com/releases/2014/02/140227125247.htm (accessed November 23, 2014).

Share This


More From ScienceDaily



More Mind & Brain News

Sunday, November 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Could Your Genes Be The Reason You're Single?

Could Your Genes Be The Reason You're Single?

Newsy (Nov. 21, 2014) Researchers in Beijing discovered a gene called 5-HTA1, and carriers are reportedly 20 percent more likely to be single. Video provided by Newsy
Powered by NewsLook.com
Milestone Birthdays Can Bring Existential Crisis, Study Says

Milestone Birthdays Can Bring Existential Crisis, Study Says

Newsy (Nov. 21, 2014) Researchers find that as people approach new decades in their lives they make bigger life decisions. Video provided by Newsy
Powered by NewsLook.com
You Don't Have To Be Alcohol Dependent To Need Treatment

You Don't Have To Be Alcohol Dependent To Need Treatment

Newsy (Nov. 21, 2014) A study by the Centers for Disease Control and Prevention found 9 out of 10 excessive drinkers in the country are not alcohol dependent. Video provided by Newsy
Powered by NewsLook.com
Your Complicated Job Might Keep Your Brain Young

Your Complicated Job Might Keep Your Brain Young

Newsy (Nov. 20, 2014) Researchers at the University of Edinburgh found the more complex your job is, the sharper your cognitive skills will likely be as you age. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins