Featured Research

from universities, journals, and other organizations

Commonly available blood-pressure medication prevents epilepsy after severe brain injury

Date:
April 22, 2014
Source:
University of California - Berkeley
Summary:
A team of neuroscientists has shown in rats that a drug commonly prescribed for hypertension can nearly eliminate the epilepsy that often follows severe head injury. The drug blocks a receptor on astrocytes, preventing a cascade of signals that lead to inflammation and neuron damage. The experiments also prove that epilepsy results from temporary breaks in the blood-brain barrier following head trauma.

When the blood-brain barrier is disrupted by a severe head injury, the blood protein albumin leaks into the brain and activates the TGF-beta receptor on astrocytes (tan cells), which triggers a cascade of events leading to inflammation. The net result can be hyperexcitable neurons (yellow) and epileptic seizures. Kaufer, Friedman and colleagues discovered this cause and effect and identified a drug that blocks the TGF-beta receptor, preventing seizures in rats.
Credit: Greg Chin, Vlad Senatorov and Oscar Vasquez (UC Berkeley)

Between 10 and 20 percent of all cases of epilepsy result from severe head injury, but a new drug promises to prevent post-traumatic seizures and may forestall further brain damage caused by seizures in those who already have epilepsy.

A team of researchers from the University of California, Berkeley, Ben-Gurion University in Israel and Charit้-University Medicine in Germany reports in the current issue of the journal Annals of Neurology that a commonly used hypertension drug prevents a majority of cases of post-traumatic epilepsy in a rodent model of the disease. If independent experiments now underway in rats confirm this finding, human clinical trials could start within a few years.

"This is the first-ever approach in which epilepsy development is stopped, as opposed to common drugs that try to prevent seizures once epilepsy develops," said coauthor Daniela Kaufer, UC Berkeley associate professor of integrative biology and a member of the Helen Wills Neuroscience Institute. "Those drugs have a very limited success and many side effects, so we are excited about the new approach."

The team, led by Kaufer; neurosurgeon Alon Friedman, associate professor of physiology and neurobiology at the Ben-Gurion University of the Negev; and Uwe Heinemann of the Charite, provides the first explanation for how brain injury caused by a blow to the head, stroke or infection leads to epilepsy. Based on 10 years of collaborative research, their findings point a finger at the blood-brain barrier -- the tight wall of cells lining the veins and arteries in the brain that is breached after trauma.

"This study for the first time offers a new mechanism and an existing, FDA-approved drug to potentially prevent epilepsy in patients after brain injuries or after they develop an abnormal blood-brain barrier," Friedman said.

The drug, losartan (Cozaarฎ), prevented seizures in 60 percent of the rats tested, when normally 100 percent of the rats develop seizures after injury. In the 40 percent of rats that did develop seizures, they averaged about one quarter the number of seizures typical for untreated rats. Another experiment showed that administration of losartan for three weeks at the time of injury was enough to prevent most cases of epilepsy in normal lab rats in the following months.

"This is a very exciting result, telling us that the drug worked to prevent the development of epilepsy and not by suppressing the symptoms," Kaufer said.

Breakdown of the blood-brain barrier

Kaufer and Friedman have been collaboratively investigating the effects of trauma on the brain since Kaufer was a graduate student in Israel 20 years ago. Throughout a postdoctoral position at Stanford University and after joining the UC Berkeley faculty in 2005, she maintained her interest in the blood-brain barrier, which normally protects the brain from potentially damaging chemicals or bacteria in the blood and prevents brain chemicals from leaking into the blood stream.

She and Friedman showed earlier that breaking down the barrier causes inflammation and leads to the development of epilepsy. They pinned the effect to a single protein called albumin, the most common protein in blood serum.

In 2009, they showed that albumin affects astrocytes, the brain's support cells, by binding to the TGF-β (transforming growth factor-beta) receptor. This initiates a cascade of steps that lead to localized inflammation, which appears to permanently damage the brain's wiring, leading to the electrical misfiring characteristic of epilepsy. The current paper conclusively demonstrates that blocking the TGF-beta receptor with losartan stops that cascade and prevents the disorder.

Drugs side effect proves crucial

Coauthor Guy Bar-Klein, a doctoral student at Ben-Gurion University, searched a long list of drugs before discovering losartan, which is approved to treat high blood pressure because it blocks the angiotensin receptor 1, but which incidentally also blocks TGF-β. It worked in the rats when delivered in their drinking water, which means that it somehow gets into the brain through the blood-brain barrier. The experiments suggest that the drug is unable to cross an intact blood-brain barrier, but reaches the brain through a breached barrier when it is most needed, Kaufer said.

Friedman developed a protocol to use MRI to check whether the blood brain barrier has been breached, allowing doctors to give losartan as a preventive treatment, if necessary, after trauma. Kaufer said that the barrier may remain open for only a few weeks after injury, so the drug would not have to be given very long to prevent damage.

"Right now, if someone comes to the emergency room with traumatic brain injury, they have a 10 to 50 percent chance of developing epilepsy, and epilepsy from brain injuries tends to be unresponsive to drugs in many patients." she said. "I'm very hopeful that our research can spare these patients the added trauma of epilepsy."


Story Source:

The above story is based on materials provided by University of California - Berkeley. The original article was written by Robert Sanders. Note: Materials may be edited for content and length.


Journal Reference:

  1. Guy Bar-Klein, Luisa P. Cacheaux, Lyn Kamintsky, Ofer Prager, Itai Weissberg, Karl Schoknecht, Paul Cheng, Soo Young Kim, Lydia Wood, Uwe Heinemann, Daniela Kaufer, Alon Friedman. Losartan prevents acquired epilepsy via TGF-β signaling suppression. Annals of Neurology, 2014; DOI: 10.1002/ana.24147

Cite This Page:

University of California - Berkeley. "Commonly available blood-pressure medication prevents epilepsy after severe brain injury." ScienceDaily. ScienceDaily, 22 April 2014. <www.sciencedaily.com/releases/2014/04/140422100109.htm>.
University of California - Berkeley. (2014, April 22). Commonly available blood-pressure medication prevents epilepsy after severe brain injury. ScienceDaily. Retrieved September 3, 2014 from www.sciencedaily.com/releases/2014/04/140422100109.htm
University of California - Berkeley. "Commonly available blood-pressure medication prevents epilepsy after severe brain injury." ScienceDaily. www.sciencedaily.com/releases/2014/04/140422100109.htm (accessed September 3, 2014).

Share This



More Health & Medicine News

Wednesday, September 3, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Snack Attack: Study Says Action Movies Make You Snack More

Snack Attack: Study Says Action Movies Make You Snack More

Newsy (Sep. 2, 2014) — You're more likely to gain weight while watching action flicks than you are watching other types of programming, says a new study published in JAMA. Video provided by Newsy
Powered by NewsLook.com
U.N. Says Ebola Travel Restrictions Will Cause Food Shortage

U.N. Says Ebola Travel Restrictions Will Cause Food Shortage

Newsy (Sep. 2, 2014) — The U.N. says the problem is two-fold — quarantine zones and travel restrictions are limiting the movement of both people and food. Video provided by Newsy
Powered by NewsLook.com
Doctors Fear They're Losing Battle Against Ebola

Doctors Fear They're Losing Battle Against Ebola

AP (Sep. 2, 2014) — As a third American missionary is confirmed to have contracted Ebola in Liberia, doctors on the ground in West Africa fear they're losing the battle against the outbreak. (Sept. 2) Video provided by AP
Powered by NewsLook.com
Tech Giants Bet on 3D Headsets for Gaming, Healthcare

Tech Giants Bet on 3D Headsets for Gaming, Healthcare

AFP (Sep. 2, 2014) — When Facebook acquired the virtual reality hardware developer Oculus VR in March for $2 billion, CEO Mark Zuckerberg hailed the firm's technology as "a new communication platform." Duration: 02:24 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins