Featured Research

from universities, journals, and other organizations

Bringing fiber optics to electronic components

Date:
April 28, 2014
Source:
South Dakota State University
Summary:
Fiber optics increased the speed and quantity of information that can be transmitted through the Internet by transforming electrical signals into pulsating light. The same can be done within laptops and other devices by using organic materials containing chromophore as an active compound, according to a materials chemist. Components made from this organic material can provide a larger bandwidth and draw less power.

Fiber optics increased the speed and quantity of information that can be transmitted through the Internet by transforming electrical signals into pulsating light.

Related Articles


The same can be done within laptops and other devices by using organic materials containing chromophore as an active compound, according to South Dakota State University materials chemist Cheng Zhang. Components made from this organic material can provide a larger bandwidth and draw less power.

Zhang began working on electro-optical chromophores while earning his doctorate at the University of Southern California. In 2000, he and chemistry professor Larry Dalton developed the first electro-optical chromophore CLD1. The 'C' in the name stands for Cheng, while the LD is for Larry Dalton, he explained. The material was patented by Pacific Wave Communications, LLC, and sold by Sigma Aldrich.

Zhang has continued his work on chromophore since coming to SDSU in 2011 as an assistant professor in the chemistry and biochemistry department through support from the South Dakota Board of Regents.

Microscopic material

To create the material, chromophore -- an organic compound that has color -- is suspended in a soft yet tough material called a polymer, according to Zhang. A coating of this material is then typically placed on a glass or silicon substrate, much like making solar panels, and then used to make electro-optical devices, he explained. Using a polymer makes the resulting device easier to integrate with electronic circuitry.

The bipolar chromophores Zhang is developing are only 3 nanometers long--barely visible under the best electronic microscope. "The diameter of a human hair is about 20,000 times the length of a bi-polar chromophore," he noted.

Insulating rings

These bi-polar chromophores act like magnets. When the tiny rods get too close together, they flip and stick together, Zhang explained. An electric field is applied to align the poles in the same direction; however, the more chromophores that are loaded into the material, the more difficult this becomes.

"This fundamental problem limits the concentration of chromophore that can be loaded into the polymer," Zhang said.

His research work seeks to solve this problem by creating a protective ring around a portion of each rod to keep them apart. This may "prevent the formation of tight aggregates even at the highest concentration," Zhang said.

He demonstrated this on the first ring-protected chromophore, PCR1, and is applying the strategy to current state-of-the-art chromophores.

Chromophore bleaching

When more rods are packed into the material, a new problem has emerged, according to Zhang. The material becomes too conductive, so when the current is applied to align the dipole, the chromophores burn out and die.

To solve the new problem, Zhang has added more insulating rings. If this effort is successful, the resulting material will have a higher electro-optic activity level, which will improve the material's performance.

According to the industry standard, electro-optical materials should be able to withstand 185 degrees Fahrenheit for 2,000 hours while maintaining at least 90 percent of the initial activity. Designing this electro-optic material involves a trade-off between its thermal stability and electro-optic activity.

"If you improve one property, the other property gets sacrificed," he said, "but we have to come up with a novel idea to minimize the trade-off."


Story Source:

The above story is based on materials provided by South Dakota State University. Note: Materials may be edited for content and length.


Cite This Page:

South Dakota State University. "Bringing fiber optics to electronic components." ScienceDaily. ScienceDaily, 28 April 2014. <www.sciencedaily.com/releases/2014/04/140428133753.htm>.
South Dakota State University. (2014, April 28). Bringing fiber optics to electronic components. ScienceDaily. Retrieved December 17, 2014 from www.sciencedaily.com/releases/2014/04/140428133753.htm
South Dakota State University. "Bringing fiber optics to electronic components." ScienceDaily. www.sciencedaily.com/releases/2014/04/140428133753.htm (accessed December 17, 2014).

Share This


More From ScienceDaily



More Matter & Energy News

Wednesday, December 17, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

How Sony Hopes To Make Any Glasses 'Smart'

How Sony Hopes To Make Any Glasses 'Smart'

Newsy (Dec. 17, 2014) Sony's glasses module attaches to the temples of various eye- and sunglasses to add a display and wireless connectivity. Video provided by Newsy
Powered by NewsLook.com
Los Angeles Police To Receive 7,000 Body Cameras

Los Angeles Police To Receive 7,000 Body Cameras

Newsy (Dec. 17, 2014) Los Angeles Mayor Eric Garcetti announced the cameras will be distributed starting Jan. 1. Video provided by Newsy
Powered by NewsLook.com
Researchers Bring Player Pianos Back to Life

Researchers Bring Player Pianos Back to Life

AP (Dec. 17, 2014) Stanford University wants to unlock the secrets of the player piano. Researchers are restoring and studying self-playing pianos and the music rolls that recorded major composers performing their own work. (Dec. 17) Video provided by AP
Powered by NewsLook.com
France's Sauternes Wine Threatened by New Train Line

France's Sauternes Wine Threatened by New Train Line

AFP (Dec. 16, 2014) Winemakers in southwestern France's Bordeaux are concerned about a proposed high speed train line that could affect the microclimate required for the region's sweet wine. Duration: 01:06 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins