Featured Research

from universities, journals, and other organizations

Fridges cooled by magnetism? Newly identified 'universal' property of metamagnets may lead to everyday uses

Date:
April 29, 2014
Source:
University of Virginia
Summary:
A new physics discovery may lead to more efficient refrigerators, heat pumps and airport scanners, among many possible uses –- perhaps within a decade.The refrigerator of 2024 may be cooled not by chemical refrigerants, but by magnetism, thanks to the work of a team of physicists and materials scientists.

Physics professor Bellave Shivaram has discovered a universal law governing the properties of metamagnets.
Credit: Dan Addison

A new physics discovery made by a University of Virginia-led team may lead to more efficient refrigerators, heat pumps and airport scanners, among many possible uses -perhaps within a decade.

The team of physicists and materials scientists have discovered a universal law governing the magnetic properties of metamagnets -- metal alloys that can undergo dramatic increases in magnetization when a small external magnetic field is applied, such as from a permanent magnet or an electromagnet.

The scientists have discovered that the magnetic effect of apparently all metamagnets is that it is non-linear. When these metamagnets are placed in an initial magnetic field and the field is doubled, they more than double in magnetic strength. This is significant because eventually scientists and engineers likely will harness this unique property for a variety of applications, including refrigeration.

"We found that this nonlinear property has the same quantitative behavior in all different types of metamagnets, which is the universal law," said Bellave Shivaram, a University of Virginia professor of physics who led the studies, which were conducted in his lab and using materials synthesized at Argonne National Laboratory in Illinois.

The findings are published in separate papers currently online in the journals Physical Review B: Rapid Communications, and Review of Scientific Instruments.

According to Shivaram, the newly unveiled non-linear property can be exploited in many ways.

"A very useful property of this type of magnetism is in magnetic refrigeration," he said. "Magnetic refrigerators are not commonplace; they still are in the experimental stage. But they could eventually become part of everyday home appliances, from heat pumps to the refrigerators we store food in."

Currently, metamagnets produce efficient cooling only at very low temperatures, using superconducting magnets, making them impractical for general refrigeration.

"With the new discoveries of the properties of metamagnets, they could become part of everyday home appliances within a decade or so," Shivaram said.

Current refrigerators are among the biggest consumers of energy in the home. They include several moving parts, which make them costly to repair, and they can leak fluorocarbons into the atmosphere, which can deplete ozone. Refrigerators of the future, using metamagnets, would have fewer moving parts, would not require refrigerants, and, likely would use less electricity, Shivaram said.

"In these new materials, the magnetism can be cycled on and off, enabling heat to be pumped away in a manner similar to what happens in a heat pump today," Shivaram said. "In today's heat pump, we use pressure to cycle the cooling medium from liquid to vapor phase. In the new magnetic refrigerators we will use a magnetic material and cycle the magnetic field instead."

Another possible application for metamagnets would be, as an example, more effective airport screening devices. Such screeners use harmless terahertz waves to scan through materials. A screener using metamagnets would generate more efficient generation of terahertz waves, Shivaram said, by converting high-powered, low-frequency radio waves into terahertz waves by using the non-linear properties of metamagnets.

"By discovering the properties of these materials we've shown their promise," Shivaram said. "We will figure out future directions and what new materials we should go after for possible uses."

His co-authors on the Physical Review B paper are former U.Va. graduate student Brian Dorsey, materials scientist David Hinks of Argonne National Laboratory and physicist Pradeep Kumar of the University of Florida. This collaborative work is continuing and recently has been augmented with the participation of Vittorio Celli, U.Va. professor emeritus of physics.


Story Source:

The above story is based on materials provided by University of Virginia. The original article was written by Fariss Samarrai. Note: Materials may be edited for content and length.


Journal References:

  1. B. S. Shivaram, Brian Dorsey, D. G. Hinks, Pradeep Kumar. Metamagnetism and the fifth-order susceptibility in UPt3. Physical Review B, 2014; 89 (16) DOI: 10.1103/PhysRevB.89.161108
  2. B. S. Shivaram. Note: Nonlinear susceptibility from high DC field torque magnetometry. Review of Scientific Instruments, 2014; 85 (4): 046107 DOI: 10.1063/1.4870796

Cite This Page:

University of Virginia. "Fridges cooled by magnetism? Newly identified 'universal' property of metamagnets may lead to everyday uses." ScienceDaily. ScienceDaily, 29 April 2014. <www.sciencedaily.com/releases/2014/04/140429125504.htm>.
University of Virginia. (2014, April 29). Fridges cooled by magnetism? Newly identified 'universal' property of metamagnets may lead to everyday uses. ScienceDaily. Retrieved August 27, 2014 from www.sciencedaily.com/releases/2014/04/140429125504.htm
University of Virginia. "Fridges cooled by magnetism? Newly identified 'universal' property of metamagnets may lead to everyday uses." ScienceDaily. www.sciencedaily.com/releases/2014/04/140429125504.htm (accessed August 27, 2014).

Share This




More Matter & Energy News

Wednesday, August 27, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Australian Airlines Relax Phone Ban Too

Australian Airlines Relax Phone Ban Too

Reuters - Business Video Online (Aug. 26, 2014) Qantas and Virgin say passengers can use their smartphones and tablets throughout flights after a regulator relaxed a ban on electronic devices during take-off and landing. As Hayley Platt reports the move comes as the two domestic rivals are expected to post annual net losses later this week. Video provided by Reuters
Powered by NewsLook.com
Hurricane Marie Brings Big Waves to California Coast

Hurricane Marie Brings Big Waves to California Coast

Reuters - US Online Video (Aug. 26, 2014) Huge waves generated by Hurricane Marie hit the Southern California coast. Rough Cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com
Chinese Researchers Might Be Creating Supersonic Submarine

Chinese Researchers Might Be Creating Supersonic Submarine

Newsy (Aug. 26, 2014) Chinese researchers have expanded on Cold War-era tech and are closer to building a submarine that could reach the speed of sound. Video provided by Newsy
Powered by NewsLook.com
Breakingviews: India Coal Strained by Supreme Court Ruling

Breakingviews: India Coal Strained by Supreme Court Ruling

Reuters - Business Video Online (Aug. 26, 2014) An acute coal shortage is likely to be aggravated as India's supreme court declared government coal allocations illegal, says Breakingviews' Peter Thal Larsen. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

    Technology News



    Save/Print:
    Share:

    Free Subscriptions


    Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

    Get Social & Mobile


    Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

    Have Feedback?


    Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
    Mobile: iPhone Android Web
    Follow: Facebook Twitter Google+
    Subscribe: RSS Feeds Email Newsletters
    Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins