Featured Research

from universities, journals, and other organizations

Smaller microchips that keep their cool

Date:
May 5, 2014
Source:
Fraunhofer-Gesellschaft
Summary:
Temperatures often over 200 degrees C occur in geothermal and oil production – conventional microelectronics hit their limits there. Researchers have now fabricated compact microchips that can keep their cool even at 300 degrees C.

Keeping their cool at 300 ฐC: the especially compact microchips of Fraunhofer IMS.
Credit: ฉ Fraunhofer IMS

Temperatures often over 200 degrees C occur in geothermal and oil production -- conventional microelectronics hit their limits there. Researchers have now fabricated compact microchips that can keep their cool even at 300 degrees C.

Related Articles


An enormous treasure slumbers in the depths of our planet. Temperatures of up to 7000 ฐCelsius are thought to be present in Earth's core, while at a depth of four to six kilometers (2.5 to 3.5 miles) it is still 150 ฐC to over 200 ฐC. These gigantic reserves of heat can be used as a renewable source of energy for geothermal power. The drill bits and bore hole probes employed are high-tech machines. They are fitted with a range of sensors and control mechanisms for their expedition into Earth's interior. They are able in this way to be very precisely controlled or autonomously analyze the environmental parameters at depth, and thereby locate suitable -- in other words, warm -- regions for geothermal production. There is one problem, however: microchips hit their thermal limits when exposed to temperatures over 200 degrees Celsius.

Withstanding temperatures of several hundred degrees Celsius

Scientists of the Fraunhofer Institute for Microelectronic Circuits and Systems IMS have now developed a new type of high-temperature process. "It becomes possible with this process to fabricate extremely compact microchips that operate flawlessly even at temperatures of up to 300 degrees Celsius," according to Holger Kappert, head of High-Temperature Electronics at Fraunhofer IMS. It is true that conventional semiconductor chips (CMOS) sometimes tolerate temperatures of up to 250 degrees Celsius, but their performance and reliability fall off rapidly. Frequently, companies must test a large quantity of standard chips using the trial-and-error method before they obtain an acceptable selection -- a laborious undertaking.

An additional avenue exists -- continuously cooling the heat-sensitive microelectronics, which can hardly be accomplished without extensive additional effort being necessary, however. There are also specialized high-temperature chips on the market already -- but with about one micrometer minimal structure size, they are very large. "The solutions available are always associated with certain trade-offs: either they have comparatively large components, or they function with limited performance," Kappert summarizes.

The microchips from IMS are different, though. At a characteristic dimension of 0.35 ตm, they are considerably smaller than the high-temperature chips available today. The advantage of these kinds of complex microstructures can be summarized as "more functionality at less size." That is what is necessary to make the chips more capable and more inteligent as well. To fabricate the heat-tolerant mini-chips, the researchers in Duisburg, Germany, use a specialized high-temperature SOI CMOS process. "SOI stands for 'silicon-on-insulator' -- that means we introduce a layer that insulates the transistors from one another," explains Kappert. This insulation prevents leakage currents that occur from influencing the operation of the chip. Leakage currents are electrical currents flowing over other than intended paths. They are caused or increased by elevated temperatures in particular. Moreover, the researchers use tungsten metallization for their chips, which is less temperature sensitive than the aluminum usually used. This increases the operating life of the high-temperature chips.

Environmentally friendlier flight

Production of geothermal energy, natural gas, or oil is not the sole area of potential application. The microchips could also prove valuable to aviation, for instance by enabling sensors to be located as close as possible to turbine engines in order to be able to observe the state of their operation. This could permit the turbines to be operated more reliably and efficiently, saving jet fuel and thereby making aviation environmentally friendlier. The first field tests of the new chips have been positive. The researchers want to offer the fabrication process as a service later this year.


Story Source:

The above story is based on materials provided by Fraunhofer-Gesellschaft. Note: Materials may be edited for content and length.


Cite This Page:

Fraunhofer-Gesellschaft. "Smaller microchips that keep their cool." ScienceDaily. ScienceDaily, 5 May 2014. <www.sciencedaily.com/releases/2014/05/140505093808.htm>.
Fraunhofer-Gesellschaft. (2014, May 5). Smaller microchips that keep their cool. ScienceDaily. Retrieved November 27, 2014 from www.sciencedaily.com/releases/2014/05/140505093808.htm
Fraunhofer-Gesellschaft. "Smaller microchips that keep their cool." ScienceDaily. www.sciencedaily.com/releases/2014/05/140505093808.htm (accessed November 27, 2014).

Share This


More From ScienceDaily



More Matter & Energy News

Thursday, November 27, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

NASA's First 3-D Printer In Space Creates Its First Object

NASA's First 3-D Printer In Space Creates Its First Object

Newsy (Nov. 26, 2014) — The International Space Station is now using a proof-of-concept 3D printer to test additive printing in a weightless, isolated environment. Video provided by Newsy
Powered by NewsLook.com
Bolivian Recycling Initiative Turns Plastic Waste Into School Furniture

Bolivian Recycling Initiative Turns Plastic Waste Into School Furniture

Reuters - Innovations Video Online (Nov. 26, 2014) — Innovative recycling project in La Paz separates city waste and converts plastic garbage into school furniture made from 'plastiwood'. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com
Blu-Ray Discs Getting Second Run As Solar Panels

Blu-Ray Discs Getting Second Run As Solar Panels

Newsy (Nov. 26, 2014) — Researchers at Northwestern University are repurposing Blu-ray movies for better solar panel technology thanks to the discs' internal structures. Video provided by Newsy
Powered by NewsLook.com
Today's Prostheses Are More Capable Than Ever

Today's Prostheses Are More Capable Than Ever

Newsy (Nov. 26, 2014) — Advances in prosthetics are making replacement body parts stronger and more lifelike than they’ve ever been. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins