Featured Research

from universities, journals, and other organizations

Nanoscale heat flow predictions: Environmentally-friendly and cost-effective nanometric-scale energy devices

Date:
May 7, 2014
Source:
Springer Science+Business Media
Summary:
Heat flow in novel nanomaterials could help in creating environmentally friendly and cost-effective nanometric-scale energy devices. Physicists are now designing novel materials with physical properties tailored to meet specific energy consumption needs. Before these so-called materials-by-design can be applied, it is essential to understand their characteristics, such as heat flow. Now physicists have developed a predictive theoretical model for heat flux in these materials, using atom-scale calculations.

Snapshot of the final configuration of a nc-Si sample.
Credit: Melis et al.

Heat flow in novel nanomaterials could help in creating environmentally friendly and cost-effective nanometric-scale energy devices.

Physicists are now designing novel materials with physical properties tailored to meet specific energy consumption needs. Before these so-called materials-by-design can be applied, it is essential to understand their characteristics, such as heat flow. Now, a team of Italian physicists has developed a predictive theoretical model for heat flux in these materials, using atom-scale calculations. The research, carried out by Claudio Melis and colleagues from the University of Cagliary, Italy, is published in the European Physical Journal B. Their findings could have implications for optimising the thermal budget of nanoelectronic devices-which means they could help dissipate the total amount of thermal energy generated by electron currents-or in the production of energy through thermoelectric effects in novel nanomaterials.

The authors relied on large-scale molecular dynamics simulations to investigate nanoscale thermal transport and determine the corresponding physical characteristics, which determine thermal conductivity. Traditional atomistic calculation methods involve a heavy computational workload, which sometimes prevents their application to systems large enough to model the experimental structural complexity of real samples.

Instead, Melis and colleagues adopted a method called approach equilibrium molecular dynamics (AEMD), which is robust and suitable for representing large systems. Thus, it can use simulations to deliver trustworthy predictions on thermal transport. The authors investigated the extent to which the reliability of the AEMD method results is affected by any implementation issues.

In addition, they applied the method to thermal transport in nanostructured silicon, a system of current interest with high potential impact on thermoelectric technology, using simulations of unprecedented size. Ultimately, the model could be applied to semiconductors used as high-efficiency thermoelectrics, and to graphene nanoribbons used as heat sinks for so-called ultra large scale integration devices, such as computer microprocessors.


Story Source:

The above story is based on materials provided by Springer Science+Business Media. Note: Materials may be edited for content and length.


Journal Reference:

  1. Claudio Melis, Riccardo Dettori, Simon Vandermeulen, Luciano Colombo. Calculating thermal conductivity in a transient conduction regime: theory and implementation. The European Physical Journal B, 2014; 87 (4) DOI: 10.1140/epjb/e2014-50119-0

Cite This Page:

Springer Science+Business Media. "Nanoscale heat flow predictions: Environmentally-friendly and cost-effective nanometric-scale energy devices." ScienceDaily. ScienceDaily, 7 May 2014. <www.sciencedaily.com/releases/2014/05/140507095750.htm>.
Springer Science+Business Media. (2014, May 7). Nanoscale heat flow predictions: Environmentally-friendly and cost-effective nanometric-scale energy devices. ScienceDaily. Retrieved October 21, 2014 from www.sciencedaily.com/releases/2014/05/140507095750.htm
Springer Science+Business Media. "Nanoscale heat flow predictions: Environmentally-friendly and cost-effective nanometric-scale energy devices." ScienceDaily. www.sciencedaily.com/releases/2014/05/140507095750.htm (accessed October 21, 2014).

Share This



More Matter & Energy News

Tuesday, October 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Thanks, Marty McFly! Hoverboards Could Be Coming In 2015

Thanks, Marty McFly! Hoverboards Could Be Coming In 2015

Newsy (Oct. 21, 2014) If you've ever watched "Back to the Future Part II" and wanted to get your hands on a hoverboard, well, you might soon be in luck. Video provided by Newsy
Powered by NewsLook.com
Robots to Fly Planes Where Humans Can't

Robots to Fly Planes Where Humans Can't

Reuters - Innovations Video Online (Oct. 21, 2014) Researchers in South Korea are developing a robotic pilot that could potentially replace humans in the cockpit. Unlike drones and autopilot programs which are configured for specific aircraft, the robots' humanoid design will allow it to fly any type of plane with no additional sensors. Ben Gruber reports. Video provided by Reuters
Powered by NewsLook.com
Graphene Paint Offers Rust-Free Future

Graphene Paint Offers Rust-Free Future

Reuters - Innovations Video Online (Oct. 21, 2014) British scientists have developed a prototype graphene paint that can make coatings which are resistant to liquids, gases, and chemicals. The team says the paint could have a variety of uses, from stopping ships rusting to keeping food fresher for longer. Jim Drury reports. Video provided by Reuters
Powered by NewsLook.com
Portable Breathalyzer Gets You Home Safely

Portable Breathalyzer Gets You Home Safely

Buzz60 (Oct. 21, 2014) Breeze, a portable breathalyzer, gets you home safely by instantly showing your blood alcohol content, and with one tap, lets you call an Uber, a cab or a friend from your contact list to pick you up. Sean Dowling (@SeanDowlingTV) has the details. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins