Featured Research

from universities, journals, and other organizations

Rotary sensors: Getting the right spin

Date:
May 16, 2014
Source:
Fraunhofer-Gesellschaft
Summary:
Rotary sensors can help determine the position of a moveable body in relation to an axis. They are essential to the smooth running of car engines in the automotive industry, for example. Researchers have developed a new kind of sensor that combines precision measurement with flexible handling, allowing it to be customized to specific measurement tasks.

The polarization sensor that measures the angle of rotation mounted on the test board. On the left: A shaft with integrated polarizing film.
Credit: © Fraunhofer IIS

Rotary sensors can help determine the position of a moveable body in relation to an axis. They are essential to the smooth running of car engines in the automotive industry, for example. Fraunhofer researchers have developed a new kind of sensor that combines precision measurement with flexible handling, allowing it to be customized to specific measurement tasks. The scientists will be presenting their prototype at the Sensor + Test trade show in Nόrnberg from June 3 to 5.

In factories, goods and products are transported from one processing station to the next via conveyor belt. For the transfer from one belt to the next to run smoothly, it must take place precisely at a specific position, which means knowing the relative position of objects on the conveyor belts as they move towards each other. This can be determined from the angle of rotation, which refers to the position of a moveable body to an axis. Rotation angles are also important within the automotive industry, where they provide information for engine feedback systems, for example, in which the rotational speed of the drive shaft must be precisely set. The angle of rotation is measured using special sensors. There are currently two types of such rotation angle sensors on the market, working according to either magnetic or optical measuring principles. Magnetic sensors are very durable and dirt resistant, giving them an advantage in harsh environments. They are, however not as precise as optical sensors. These in turn are not very flexible to use since they must be precisely mounted in a fixed position on the object being measured.

Researchers at the Fraunhofer Institute for Integrated Circuits IIS in Erlangen have now developed a new rotational angle sensor that combines the advantages of both solutions into one. "While our sensor also relies on optical measurement, its functional principle is completely different to other products currently available on the market," says Dr. Norbert Weber, group manager at the IIS. The researchers' development utilizes the polarization effect. Under normal conditions, light oscillates in all possible directions, meaning it is not polarized in its original state. With the help of special polarizing films, it is possible to steer these oscillations in a defined uniform direction, either horizontally or vertically. A good example of how polarizing films work is to be found in 3D glasses, which generate depth information because the viewer looks through lenses fitted with different polarizing filters for each eye. The researchers attach just such a polarization film to the test object -- the drive shaft, for example -- and direct a light beam at it. Polarized light is produced on the reverse side of the film. Should the drive shaft now rotate, the polarization vector rotates with it, thus serving as a kind of direction indicator.

Sensor can be fitted flexibly

The read-out module is then mounted in such a way that it is located in the beam of light. Several wire grids -- small microstructures -- are arranged in a matrix on the sensor chip. These lattices can be produced as part of the normal CMOS chip manufacturing process without any additional effort. The angular position of the shaft is calculated when the polarized light strikes the lattices. "In order to obtain a definite measurement of the angular position of a shaft, we need at least three grids that are each structured in different directions. Depending on the measuring task we can also add further grids, thus adapting the chip to suit the specific requirements of customers while increasing measurement accuracy, "explains Weber. With this design, the Erlanger researchers are not able to attain 100 percent of the precision of conventional optical sensors, but their sensor is significantly more robust and can be positioned relatively flexibly. "The chip does not even have to sit directly on the optical axis -- the only thing that matters is that it is located within the light beam," says Weber. Another advantage is that even if the shaft wobbles slightly, the result will not be affected as long as the beam is wide enough. At the SENSOR + TEST 2014 trade fair, researchers from Erlangen will present their solution on an exhibit which demonstrates rotation angle measurement on a hollow shaft. The measurement results are then displayed as a graph on the monitor.


Story Source:

The above story is based on materials provided by Fraunhofer-Gesellschaft. Note: Materials may be edited for content and length.


Cite This Page:

Fraunhofer-Gesellschaft. "Rotary sensors: Getting the right spin." ScienceDaily. ScienceDaily, 16 May 2014. <www.sciencedaily.com/releases/2014/05/140516092044.htm>.
Fraunhofer-Gesellschaft. (2014, May 16). Rotary sensors: Getting the right spin. ScienceDaily. Retrieved September 17, 2014 from www.sciencedaily.com/releases/2014/05/140516092044.htm
Fraunhofer-Gesellschaft. "Rotary sensors: Getting the right spin." ScienceDaily. www.sciencedaily.com/releases/2014/05/140516092044.htm (accessed September 17, 2014).

Share This



More Matter & Energy News

Wednesday, September 17, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Space Race Pits Bezos Vs Musk

Space Race Pits Bezos Vs Musk

Reuters - Business Video Online (Sep. 16, 2014) — Amazon CEO Jeff Bezos' startup will team up with Boeing and Lockheed to develop rocket engines as Elon Musk races to have his rockets certified. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
MIT's Robot Cheetah Unleashed — Can Now Run, Jump Freely

MIT's Robot Cheetah Unleashed — Can Now Run, Jump Freely

Newsy (Sep. 16, 2014) — MIT developed a robot modeled after a cheetah. It can run up to speeds of 10 mph, though researchers estimate it will eventually reach 30 mph. Video provided by Newsy
Powered by NewsLook.com
Manufacturer Prints 3-D Car In Record Time

Manufacturer Prints 3-D Car In Record Time

Newsy (Sep. 15, 2014) — Automobile manufacturer Local Motors created a drivable electric car using a 3-D printer. Printing the body only took 44 hours. Video provided by Newsy
Powered by NewsLook.com
Refurbished New York Subway Tunnel Unveiled After Sandy Damage

Refurbished New York Subway Tunnel Unveiled After Sandy Damage

Reuters - US Online Video (Sep. 15, 2014) — New York officials unveil subway tunnels that were refurbished after Superstorm Sandy. Nathan Frandino reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

    Technology News



    Save/Print:
    Share:  

    Free Subscriptions


    Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

    Get Social & Mobile


    Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

    Have Feedback?


    Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
    Mobile iPhone Android Web
    Follow Facebook Twitter Google+
    Subscribe RSS Feeds Email Newsletters
    Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins