Featured Research

from universities, journals, and other organizations

Limited motor skills in early infancy may be trait of autism

June 17, 2014
Kennedy Krieger Institute
Researchers have announced findings that provide evidence for reduced grasping and fine motor activity among six-month-old infants with an increased familial risk for autism spectrum disorders.

esearchers from Kennedy Krieger Institute in Baltimore, Md., announced findings that provide evidence for reduced grasping and fine motor activity among six-month-old infants with an increased familial risk for autism spectrum disorders (ASD). The research, which was published in Child Development, has important implications for our overall understanding of ASDs. Furthermore, the results suggest that subtle lags in object exploration-related motor skills in early infancy may present an ASD endophenotype -- a heritable characteristic that may have genetic relation to ASD without predicting a full diagnosis- and further our understanding of the genes involved in the disorder.

"Among the infants with familial history of ASD, many were shown to have reduced fine motor skills regardless of eventual ASD diagnosis," says Dr. Rebecca Landa, lead author and director of Kennedy Krieger's Center for Autism and Related Disorders. "This means that reduced fine motor skills could be an ASD endophenotype without predicting full diagnosis. Identifying potential endophenotypes has important implications for future research and may improve our understanding of the neurobiology and genetics of ASDs."

Researchers conducted two experiments examining the correlation of early motor development and object exploration in children with low risk (LR) or high risk (HR) of developing an ASD. Researchers measured key early learning skills, such as object manipulation and grasping activity, in infants at six months of age and again at 10 months. While all infants scored within the expected range and showed no difference in terms of their object manipulation, there were subtle signs that showed reduced grasping activity in HR infants as compared to their LR age-peers. These findings demonstrate that regardless of developmental outcomes, early motor skill differences in HR infants may represent an endophenotype that can be linked to ASD.

About Experiment 1

In experiment 1, participants included 129 infants, largely consisting of infant siblings of children with confirmed ASD diagnoses. During the testing period, most participants were six months old and were then followed longitudinally to the age of 36 months. Infants completed an assessment using the Mullen Scales of Early Learning (MSEL), which is a standardized assessment tool providing scores in five categories: Gross Motor (GM); Fine Motor (FM); Visual Reception (VR); Receptive Language (RL); and Expressive Language (EL). Based on the results of this assessment, infants were then divided into four groups : low-risk (LR) infants without ASD; high-risk (HR) infants without ASD, language, or social delays; HR infants showing language or social delays but not ASD; and HR infants with autism or ASD diagnosis. All children in the HR ASD group met DSM-IV diagnostic criteria for the disorder.

All four groups in Experiment 1 scored within the typical range on the MSEL subtests, meaning that none exhibited a clinical delay in their overall fine motor development at age six months. Subtle differences between HR and LR infants emerged even in HR infants who did not receive a diagnosis of ASD or other delays by age 36 months, which suggests that lower fine motor scores on the MSEL are characteristic of infants at high familial risk for ASD. In order to examine whether the HR infants would catch up to the LR infants in time, researchers conducted a second experiment with new participants.

About Experiment 2

Experiment 2 focused on a new group of six-month-old infants in both LR and HR categories and examined only their grasping behaviors in a naturalistic, free-play context, which was an important factor that emerged in Experiment 1. Participants included 42 infants who were siblings of children with ASD. The infants were observed in an unstructured play session.

The results of Experiment 2 showed reduced grasping and object exploration activity in six-month-old infants at HR for ASD. Overall, the MSEL FM T-score results observed in Experiment 2 show a similar pattern as in Experiment 1, but statistical results are somewhat weakened by an effect of gender in the LR sample. Unique to Experiment 2, was the sole focus on object manipulation-related items of the MSEL, which offered a consistent measure to identify differences between HR and LR infants. Reduced grasping activity in HR infants at age 6 months was also observed during an unstructured free-play task in Experiment 2, which provides additional evidence for the findings observed in Experiment 1. However, the HR infants caught up to the LR group in grasping, as measured in this study, by 10 months of age.

Future studies are needed to examine these preliminary findings more closely to specifically assess grasping ability in infants that receive an ASD diagnosis later in life.

The study was funded in part by the National Institute of Mental Health, the Autism Science Foundation and ROAR for Autism.

Story Source:

The above story is based on materials provided by Kennedy Krieger Institute. Note: Materials may be edited for content and length.

Cite This Page:

Kennedy Krieger Institute. "Limited motor skills in early infancy may be trait of autism." ScienceDaily. ScienceDaily, 17 June 2014. <www.sciencedaily.com/releases/2014/06/140617170833.htm>.
Kennedy Krieger Institute. (2014, June 17). Limited motor skills in early infancy may be trait of autism. ScienceDaily. Retrieved August 27, 2014 from www.sciencedaily.com/releases/2014/06/140617170833.htm
Kennedy Krieger Institute. "Limited motor skills in early infancy may be trait of autism." ScienceDaily. www.sciencedaily.com/releases/2014/06/140617170833.htm (accessed August 27, 2014).

Share This

More Mind & Brain News

Wednesday, August 27, 2014

Featured Research

from universities, journals, and other organizations

Featured Videos

from AP, Reuters, AFP, and other news services

Alice in Wonderland Syndrome

Alice in Wonderland Syndrome

Ivanhoe (Aug. 27, 2014) It’s an unusual condition with a colorful name. Kids with “Alice in Wonderland” syndrome see sudden distortions in objects they’re looking at or their own bodies appear to change size, a lot like the main character in the Lewis Carroll story. Video provided by Ivanhoe
Powered by NewsLook.com
Stopping Schizophrenia Before Birth

Stopping Schizophrenia Before Birth

Ivanhoe (Aug. 27, 2014) Scientists have long called choline a “brain booster” essential for human development. Not only does it aid in memory and learning, researchers now believe choline could help prevent mental illness. Video provided by Ivanhoe
Powered by NewsLook.com
Personalized Brain Vaccine for Glioblastoma

Personalized Brain Vaccine for Glioblastoma

Ivanhoe (Aug. 27, 2014) Glioblastoma is the most common and aggressive brain cancer in humans. Now a new treatment using the patient’s own tumor could help slow down its progression and help patients live longer. Video provided by Ivanhoe
Powered by NewsLook.com
Brain Surgery in 3-D

Brain Surgery in 3-D

Ivanhoe (Aug. 27, 2014) Neurosurgeons now have a new approach to brain surgery using the same 3D glasses you’d put on at an IMAX movie theater. Video provided by Ivanhoe
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.


Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News


Free Subscriptions

Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile

Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?

Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins