Featured Research

from universities, journals, and other organizations

Organ network in transparent chip for detailed study of how cancer cells spread

Date:
June 23, 2014
Source:
Eindhoven University of Technology
Summary:
The recent development of the concept of organs on a chip opens the possibility of realistically studying human organs without the use of patients or animal testing. One researcher goes one step further: he intends to make microsystems in which multiple ‘organs’ are connected through ‘blood vessels.’ That will, for example, allow precise investigation of how cancer spreads. This could eventually make the development of medical drug much cheaper and faster.

Cross section of microsystem to study metastasis.
Credit: ICMS Visualisation Studio

The recent development of the concept of organs on a chip opens the possibility of realistically studying human organs without the use of patients or animal testing. Professor Jaap den Toonder, who gave his inaugural lecture at Eindhoven University of Technology (TU/e) on 20 June, even goes one step further: he intends to make microsystems in which multiple 'organs' are connected through 'blood vessels'. That will for example allow precise investigation of how cancer spreads. This could eventually make the development of medical drug much cheaper and faster. TU/e is starting a special microfabrication lab to develop the required technology.

Breast cancer usually spreads to the bone marrow, the brain or the lungs. But it is hard to follow exactly how this process works -- it can't be observed directly in the human body. This is exactly the question that Jaap den Toonder, professor of Microsystems, wants to help answer, together with other Dutch institutes. Den Toonder has been involved right from the start in the development of organs on a chip, together with other researchers including Donald Ingber of the Wyss Institute at Harvard.

Metastasis

The TU/e professor is working to develop a microsystem in which different organs are represented as an 'organ on a chip', linked by a system of 'blood vessels'. The sample of breast tissue contains the primary tumor. Because the microsystem is fully transparent, researchers can see with high accuracy how and when the cancer cells spread, or metastasize, to the other organs. For an impression of how this will work, please see this video: https://www.youtube.com/watch?v=DOvDMut0Vx4

Individual organs on a chip are tiny pieces of cultured live tissue with an artificial blood supply. The aim is to allow the tissue to be studied, for example to investigate how a disease develops or how tissue responds to medicines. However both disease and medicines often involve interaction between multiple organs. A typical example is the interaction between different medicines in the liver, through which substances are produced which could be toxic for other organs. This is the reason to move from one organ on a chip to microsystems with multiple organs. A microsystem typically measures several centimeters and contains a network of channels and microchambers with sizes varying from 1 to 100 micrometers.

No animal testing

Systems of this kind can help to achieve a big reduction in the cost of developing medical drugs. Testing is now often carried out on human cells in Petri dishes, but these do not provide a realistic natural environment. In addition, animal tests are carried out, but these often react differently from humans. In addition, in animal tests it is not possible to observe in real-time exactly what is happening. And the fact that a medicine does not work as expected is often not discovered until it is actually tested on humans, by which time a lot of costly work may already have been done. By using a microsystem with organs on a chip, researchers will in the near future be able to perform tests much more quickly and realistically, without the need to use animals or human test subjects. Den Toonder believes that the first applications will be ready for use within four to eight years.

The microsystems need to provide an environment as is present in the human body to ensure the validity of the test results, Den Toonder explains. The cell environment must for example produce the right bioactive signals, so cells display true (patho-)physiological behavior. Also, the deformation and rigidity of the environment are very important. "There are strong indications that increased rigidity of the environment can make cancer cells trigger to become invasive, which is the first phase of metastasis."

No costly cleanroom

To make the microsystems, Den Toonder uses a technique derived from semiconductor chip production: lithography. He refers to this as 'everyday lithography', because the smallest dimensions are much larger than those in the production of microchips. "Our smallest dimensions are 1 to 10 micrometers. At that scale you don't need a costly cleanroom, and we don't need to use smaller dimensions than that. The smallest scale at which we work is that of red blood cells and micro size blood vessels, and these are of the order of several micrometers." In addition, the fluid flow in such narrow vessels is by definition laminar, so it can easily be monitored.

TU/e will in the near future build a 'microfab lab' specially for the development of microsystems and research with these systems. The 700 square meter lab will be the best equipped facility of its kind in the Netherlands, and represents an investment of more than a million euros.


Story Source:

The above story is based on materials provided by Eindhoven University of Technology. Note: Materials may be edited for content and length.


Cite This Page:

Eindhoven University of Technology. "Organ network in transparent chip for detailed study of how cancer cells spread." ScienceDaily. ScienceDaily, 23 June 2014. <www.sciencedaily.com/releases/2014/06/140623092155.htm>.
Eindhoven University of Technology. (2014, June 23). Organ network in transparent chip for detailed study of how cancer cells spread. ScienceDaily. Retrieved July 25, 2014 from www.sciencedaily.com/releases/2014/06/140623092155.htm
Eindhoven University of Technology. "Organ network in transparent chip for detailed study of how cancer cells spread." ScienceDaily. www.sciencedaily.com/releases/2014/06/140623092155.htm (accessed July 25, 2014).

Share This




More Matter & Energy News

Friday, July 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

TSA Administrator on Politics and Flight Bans

TSA Administrator on Politics and Flight Bans

AP (July 24, 2014) TSA administrator, John Pistole's took part in the Aspen Security Forum 2014, where he answered questions on lifting of the ban on flights into Israel's Tel Aviv airport and whether politics played a role in lifting the ban. (July 24) Video provided by AP
Powered by NewsLook.com
Creative Makeovers for Ugly Cellphone Towers

Creative Makeovers for Ugly Cellphone Towers

AP (July 24, 2014) Mobile phone companies and communities across the country are going to new lengths to disguise those unsightly cellphone towers. From a church bell tower to a flagpole, even a pencil, some towers are trying to make a point. (July 24) Video provided by AP
Powered by NewsLook.com
Algonquin Power Goes Activist on Its Target Gas Natural

Algonquin Power Goes Activist on Its Target Gas Natural

TheStreet (July 23, 2014) When The Deal's Amanda Levin exclusively reported that Gas Natural had been talking to potential suitors, the Ohio company responded with a flat denial, claiming its board had not talked to anyone about a possible sale. Lo and behold, Canadian utility Algonquin Power and Utilities not only had approached the company, but it did it three times. Its last offer was for $13 per share as Gas Natural's was trading at a 60-day moving average of about $12.50 per share. Now Algonquin, which has a 4.9% stake in Gas Natural, has taken its case to shareholders, calling on them to back its proposals or, possibly, a change in the target's board. Video provided by TheStreet
Powered by NewsLook.com
Robot Parking Valet Creates Stress-Free Travel

Robot Parking Valet Creates Stress-Free Travel

AP (July 23, 2014) 'Ray' the robotic parking valet at Dusseldorf Airport in Germany lets travelers to avoid the hassle of finding a parking spot before heading to the check-in desk. (July 23) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

    Health News

      Environment News

        Technology News



          Save/Print:
          Share:

          Free Subscriptions


          Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

          Get Social & Mobile


          Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

          Have Feedback?


          Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
          Mobile: iPhone Android Web
          Follow: Facebook Twitter Google+
          Subscribe: RSS Feeds Email Newsletters
          Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins