Featured Research

from universities, journals, and other organizations

'Compressive sensing' provides new approach to measuring a quantum system

Date:
June 27, 2014
Source:
University of Rochester
Summary:
In quantum physics, momentum and position are an example of conjugate variables. This means they are connected by Heisenberg's Uncertainty Principle, which says that both quantities cannot be simultaneously measured precisely. Recently, researchers have been developing novel techniques, such as 'weak measurement,' to measure both at the same time. Now physicists have shown that a technique called compressive sensing offers a way to measure both variables at the same time, without violating the Uncertainty Principle.

Recovered position and momentum images showing how compressive sensing can be used to measure two conjugate variables, in this case using the university logo as an object.
Credit: Howland et al. Phys. Rev. Lett. 112, 253602

In quantum physics, momentum and position are an example of conjugate variables. This means they are connected by Heisenberg's Uncertainty Principle, which says that both quantities cannot be simultaneously measured precisely. Recently, researchers have been developing novel techniques, such as "weak measurement," to measure both at the same time. Now University of Rochester physicists have shown that a technique called compressive sensing also offers a way to measure both variables at the same time, without violating the Uncertainty Principle.

In a paper published in Physical Review Letters this week and highlighted as an Editors' Suggestion, the Rochester team explain that when measuring quantum systems each detection event gives a little information about momentum and a little about position, so that information about the whole system can be obtained. Graduate student and lead author Gregory Howland, who carried out the experiment with his colleagues James Schneeloch, Daniel Lum and his advisor Professor John Howell, explains that the compressive sensing approach "economizes the use of this information." Compressive sensing uses the possibility of compressing the signal to be able to recover more information from relatively few measurements, and therefore obtain an understanding of the system.

"We use random on-off patterns to gain a small amount of position information while only minimally affecting the momentum of the photons," explains Howell, professor of physics at the University of Rochester. "In much the same way as weak measurements, the random on-off patterns gain very little information about the position of the photons, but putting all the patterns together, we can learn about the images carried by the light."

Compressive sensing has been widely used in the last decade in signal processing applications such as magnetic resonance imaging and radio astronomy. Howland explained that recently it has even been used in imaging applications, for example, when Howland and his colleagues used the technique to enable a single pixel camera to capture the 3D movement of a tennis ball swinging on a string.

Although the team applied compressive sensing in this case to gain information about momentum and position, they could also have applied it other conjugate variables like time and energy for example. To begin, they illuminated an object with a laser beam. They then used a simple, standard imaging setup to be able to retrieve an image of the object, which gives the position information, and also image the Fourier transform of the object, which gives the momentum information. However, instead of doing a complete, or 'projective' measurement, they used compressive sensing to do the equivalent of a "weak measurement" to get position information. This requires a series of random filters (random on-off patterns) to be applied to the system, which block some of the signal but allow enough of it to pass to be able to image the Fourier transform of the object, which is effectively a "strong" momentum measurement.

"It may be counterintuitive to realize that random measurements can provide the same results as strong, projective measurements and do so more efficiently," says Howland. "Not only that, but in the quantum domain we can do this and also measure the conjugate variable in the same experiment."


Story Source:

The above story is based on materials provided by University of Rochester. Note: Materials may be edited for content and length.


Journal Reference:

  1. Gregory A. Howland, Daniel J. Lum, Matthew R. Ware, John C. Howell. Photon counting compressive depth mapping. Physical Review Letters, 2014 [link]

Cite This Page:

University of Rochester. "'Compressive sensing' provides new approach to measuring a quantum system." ScienceDaily. ScienceDaily, 27 June 2014. <www.sciencedaily.com/releases/2014/06/140627134939.htm>.
University of Rochester. (2014, June 27). 'Compressive sensing' provides new approach to measuring a quantum system. ScienceDaily. Retrieved September 19, 2014 from www.sciencedaily.com/releases/2014/06/140627134939.htm
University of Rochester. "'Compressive sensing' provides new approach to measuring a quantum system." ScienceDaily. www.sciencedaily.com/releases/2014/06/140627134939.htm (accessed September 19, 2014).

Share This



More Matter & Energy News

Friday, September 19, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

MIT BioSuit A New Take On Traditional Spacesuits

MIT BioSuit A New Take On Traditional Spacesuits

Newsy (Sep. 19, 2014) The MIT BioSuit could be an alternative to big, bulky traditional spacesuits, but the concept needs some work. Video provided by Newsy
Powered by NewsLook.com
Virtual Reality Headsets Unveiled at Tokyo Game Show

Virtual Reality Headsets Unveiled at Tokyo Game Show

AFP (Sep. 18, 2014) Several companies unveiled virtual reality headsets at the Tokyo Game Show, Asia's largest digital entertainment exhibition. Duration: 00:48 Video provided by AFP
Powered by NewsLook.com
Apple's iOS8 Includes New 'Killswitch' To Curb Theft

Apple's iOS8 Includes New 'Killswitch' To Curb Theft

Newsy (Sep. 18, 2014) Apple's new operating system, iOS 8, comes with Apple's killswitch feature already activated, unlike all the models before it. Video provided by Newsy
Powered by NewsLook.com
Stocks Hit All-Time High as Fed Holds Steady

Stocks Hit All-Time High as Fed Holds Steady

AP (Sep. 17, 2014) The Federal Reserve signaled Wednesday that it plans to keep a key interest rate at a record low because a broad range of U.S. economic measures remain subpar. Stocks hit an all-time high on the news. (Sept. 17) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins