Featured Research

from universities, journals, and other organizations

Myc inhibition an effective therapeutic strategy against most aggressive brain tumors

Date:
August 18, 2014
Source:
Vall d´Hebron Institute of Oncology
Summary:
The Myc protein plays a key role in the development of several tumor types and its inhibition could therefore prove an effective therapy against many different cancers. Previous studies successfully blocked Myc through expression of an inhibitor, resulting in the eradication of lung tumors in preclinical models.

This image shows the "Mouse Models of Cancer Therapies" group.
Credit: VHIO

Research led by the Vall d'Hebron Institute of Oncology (VHIO) evidence the most conclusive preclinical results to-date validating Myc inhibition as a therapeutic strategy in glioma -- a highly agressive tumor type that notoriously outsmarts current anti-cancer therapies. The study led by Laura Soucek, Principal Investigator of VHIO´s Mouse Models of Cancer Therapies Group, published in Nature Communications, not only represents an important step forward in ultimately providing brain glioma patients with new therapeutic avenues, but also reveals new insights into the biology of Myc that could further impact on its therapeutic potential.

In a study published last year, the group succeded in eradicating lung tumors in transgenic mice by adopting the same strategy involving the expression of Omomyc, a Myc inhibitor designed by Soucek. They also confirmed that there were no side effects post-administration of repeated and long-term treatment. Importantly, there was no evidence of resistance to therapy -- one of the greatest challenges in the treatment of cancer. These results therefore confirmed Myc inhibition as a sound and effective therapeutic strategy for the development of novel cancer drugs.

Soucek and her group were to raise the bar yet higher. Firstly, the focus on gene expression-based therapy under experimental study progressed and re-programed on the development of an administrable Omomyc-based drug. Second, the group continued to show the efficacy of Myc inhibition across different tumors and, above and beyond transgenic models, they showed the same success in human tumors using a technique that transfers human cancer cells to immunodeficient mice. "Upon reporting initial results at preclinical level, our main concern was how do demonstrate these findings in human tumors," says Laura Soucek. "Firstly, we focused on how they could apply to other tissues and other more aggressive tumor types for which there are no effective treatments, whereby an ´Omomyc solution´ could make all the difference. We also aimed to reveal new insights into the mechanism of action of Omomyc in tumor cells." It seems that Soucek's group has now found answers to all these questions. "All our efforts must now concentrate on finding a means for its pharmacological administration. Based on our research currently underway, we have every reason to be optimistic" asserts Soucek.

A novel therapy for the most common and aggressive brain tumor

After four years´ exhaustive research, these latest results bring more good news and with them, preclinical Myc inhibition has also been validated as a therapeutic strategy against astrocytoma, a type of glioma, in vivo in mouse models and in vitro in stem cells of these tumors. In these models, which develop advanced brain tumors with clear neurological symptoms, treatment with the Omomyc transgene drastically reduces tumors and improves the associated symptoms until the mouse recovers and starts to act completely normally. Mice treated with Omomyc survived, whereas those without, did not. "We did not stop there," explains Soucek, "we applied therapy with Omomyc to both human glioblastoma cell lines and mice with patient-derived tumor xenografts that faithfully recapitulate human tumors." The therapeutic impact of Omomyc lies in its structure, which is similar to that of Myc, making it possible to block the transcription of genes controlled by this protein. Myc inhibition leads to "defects" in tumor cells and often results in their death by inducing mitotic aberrations, thus halting normal cell division.

"Our results undoubtedly show that Myc inhibition is effective in mouse tumors and, more notably, in human glioma." she explains. The group has demonstrated the additional therapeutic potential of Omomyc thanks to their clinically orientated approach aimed against the most common and aggressive primary tumor to affect the adult central nervous system -- glioblastoma, for which there is a critical call to improve current therapies which are largely ineffective. "This is the very first time that the use of Omomyc in human tumor specimens have been validated. We have also confirmed that Myc inhibition is effective against the tumor once it has developed, acts against tumor initiating cells, and prevents them from dividing, proliferating and forming the tumor again." continues Dr. Soucek.

Mitotic catastrophe as the therapeutic mechanism of Myc inhibition

The Myc protein plays an important role in regulating gene transcription, controlling the expression of up to 15% of human genes. It is also implicated in cellular proliferation, differentiation and apoptosis (programmed cell death which is necessary for tissue regeneration and the elimination of damaged cells). However, alterations in this protein trigger uncontrolled cell proliferation, which can result in cancers developing in different tissues. Myc deregulation is actually found in most tumors including cancer of the cervix, breast, colon, lung, pancreas, and stomach.

Brain tumors can now be added to this list of potential tumors that can be targeted with Myc inhibition.

At the cellular level, we now know more about its mechanism of action. Regardless of the experimental system used, Myc inhibition reduces proliferation and increases cell death. "Importantly, the cells we treated with Omomyc went crazy. They showed problems with cell proliferation, with aberrant mitosis and the formation of cells with many nuclei that then died through mitotic catastrophe, that is, due to the inability to divide properly" explains Laura Soucek. "If we do not allow Myc to function normally, tumor cells cannot divide efficiently." she affirms. Myc is not deregulated in healthy cells, hence, its inhibition does not generate any significant side effects that might limit the use of this therapy.

To conclude, Myc inhibition as a therapeutic strategy against brain tumors opens up new avenues signposting fresh hope and improved, more effective therapies for patients. Soucek and her team are consequently concentrating on translating their findings to the clinic. Preliminary results show promise.


Story Source:

The above story is based on materials provided by Vall d´Hebron Institute of Oncology. Note: Materials may be edited for content and length.


Journal Reference:

  1. Daniela Annibali, Jonathan R. Whitfield, Emilia Favuzzi, Toni Jauset, Erika Serrano, Isabel Cuartas, Sara Redondo-Campos, Gerard Folch, Alba Gonzàlez-Juncà, Nicole M. Sodir, Daniel Massó-Vallés, Marie-Eve Beaulieu, Lamorna B. Swigart, Margaret M. Mc Gee, Maria Patrizia Somma, Sergio Nasi, Joan Seoane, Gerard I. Evan, Laura Soucek. Myc inhibition is effective against glioma and reveals a role for Myc in proficient mitosis. Nature Communications, 2014; 5 DOI: 10.1038/ncomms5632

Cite This Page:

Vall d´Hebron Institute of Oncology. "Myc inhibition an effective therapeutic strategy against most aggressive brain tumors." ScienceDaily. ScienceDaily, 18 August 2014. <www.sciencedaily.com/releases/2014/08/140818095023.htm>.
Vall d´Hebron Institute of Oncology. (2014, August 18). Myc inhibition an effective therapeutic strategy against most aggressive brain tumors. ScienceDaily. Retrieved October 20, 2014 from www.sciencedaily.com/releases/2014/08/140818095023.htm
Vall d´Hebron Institute of Oncology. "Myc inhibition an effective therapeutic strategy against most aggressive brain tumors." ScienceDaily. www.sciencedaily.com/releases/2014/08/140818095023.htm (accessed October 20, 2014).

Share This



More Health & Medicine News

Monday, October 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Microneedle Patch Promises Painless Pricks

Microneedle Patch Promises Painless Pricks

Reuters - Innovations Video Online (Oct. 18, 2014) — Researchers at The National University of Singapore have invented a new microneedle patch that could offer a faster and less painful delivery of drugs such as insulin and painkillers. Video provided by Reuters
Powered by NewsLook.com
Raw: Nurse Nina Pham Arrives in Maryland

Raw: Nurse Nina Pham Arrives in Maryland

AP (Oct. 17, 2014) — The first nurse to be diagnosed with Ebola at a Dallas hospital walked down the stairs of an executive jet into an ambulance at an airport in Frederick, Maryland, on Thursday. Pham will be treated at the National Institutes of Health. (Oct. 16) Video provided by AP
Powered by NewsLook.com
Raw: Cruise Ship Returns to US Over Ebola Fears

Raw: Cruise Ship Returns to US Over Ebola Fears

AP (Oct. 17, 2014) — A Caribbean cruise ship carrying a Dallas health care worker who is being monitored for signs of the Ebola virus is heading back to Texas, US, after being refused permission to dock in Cozumel, Mexico. (Oct. 17) Video provided by AP
Powered by NewsLook.com
Spanish Govt: Four Suspected Ebola Cases in Spain Test Negative

Spanish Govt: Four Suspected Ebola Cases in Spain Test Negative

AFP (Oct. 17, 2014) — All four suspected Ebola cases admitted to hospitals in Spain on Thursday have tested negative for the deadly virus in a first round of tests, the government said Friday. Duration: 00:55 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins