Featured Research

from universities, journals, and other organizations

Materials Engineers Usher In Age Of Complex, 'Self-Organizing' Polymers

Date:
August 29, 1997
Source:
Cornell University
Summary:
Having mastered the world of simple polymers, materials engineers will now turn their attention toward complex, "self-organizing" polymers. And this will have a profound effect on our lives -- perhaps with the potential of keeping airplane wings free of ice, according to a Cornell scientist in the latest edition of the journal Science (Aug. 29, 1997).

ITHACA, N.Y. -- Having mastered the world of simple polymers, materialsengineers will now turn their attention toward complex, "self-organizing"polymers. And this will have a profound effect on our lives -- perhapswith the potential of keeping airplane wings free of ice, according to aCornell scientist in the latest edition of the journal Science (Aug. 29,1997).

Related Articles


"This is the beginning of a new age in polymer research," said ChristopherK. Ober, associate professor of materials science and engineering in theCollege of Engineering, Cornell University. "Right now, we use simplepolymers like plastic in our everyday life; it's nothing special anymore.But with new, complex polymers, we could have materials where, for example,the surfaces may be designed to be markedly different from the polymerinterior. Another example is a super-strong polymer with a water-repellentsurface that could be used for an airplane wing that doesn't ice up. Andwe're taking the first steps into that new age."

Ober says that in the new age of complex, self-organizing polymers made byborrowing the self-processing behavior and complex functions of naturalpolymers, different types of products are beginning to emerge. Complexpolymers are now seen as useful for films and surfaces, replete withmultiple, self-growing layers, each with different functions. He adds thatthrough spontaneously grown cylinders within a polymer structure,technology could use such cylinders for molecular-scale wires -- wires assmall as 100 angstroms in diameter. "We can do this by controlling themolecular geometry of the polymer," he said. "With these new types ofpolymers, we are beginning to build in the same complexity as biologicalsystems."

Murugappan Muthukumar of the University of Massachusetts at Amherst, EdwinL. Thomas of the Massachusetts Institute of Technology, and Ober publishedthe invited article in Science, called "Competing Molecular Interactionsand the Formation of Ordered Structures on Different Length Scales inSelf-Organizing Polymeric Materials." This article is among six in aspecial section on microstructural engineering of materials.

Funding for this research into complex polymers has been provided by theOffice of Naval Research Laboratory, the Air Force Office of SponsoredResearch and the National Science Foundation. The research was carried outby Jianguo Wang, Cornell postdoctorate associate in materials science andengineering, and Guoping Mao, Cornell senior researcher in materialsscience and engineering.

Sophisticated use of self-organizing materials, which include liquidcrystal, block coploymers, hydrogen-bonded complexes and many naturalpolymers, may hold the key to developing new structures and devices in manyadvanced technological industries. Now, synthetic structures are designedwith only one structure forming process in mind, Ober said. With complex,self-organizing polymers, molecular-scaled, multilayered devices can bebuilt with each layer -- for example on a film -- for a purpose.

"Imagine growing different layers for different functions," said Ober."This has possible applications for biotechnology, sensor development, evensmart surfaces. An example where complex polymers could be used would besensors made using this technology, where we might soon be able to monitorblood properties or other biological functions. Some day it might bepossible to produce such microelectronics sensors directly from a complexpolymer in a single processing step."

-30-


Story Source:

The above story is based on materials provided by Cornell University. Note: Materials may be edited for content and length.


Cite This Page:

Cornell University. "Materials Engineers Usher In Age Of Complex, 'Self-Organizing' Polymers." ScienceDaily. ScienceDaily, 29 August 1997. <www.sciencedaily.com/releases/1997/08/970829054053.htm>.
Cornell University. (1997, August 29). Materials Engineers Usher In Age Of Complex, 'Self-Organizing' Polymers. ScienceDaily. Retrieved December 22, 2014 from www.sciencedaily.com/releases/1997/08/970829054053.htm
Cornell University. "Materials Engineers Usher In Age Of Complex, 'Self-Organizing' Polymers." ScienceDaily. www.sciencedaily.com/releases/1997/08/970829054053.htm (accessed December 22, 2014).

Share This


More From ScienceDaily



More Matter & Energy News

Monday, December 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Will New A350 Help Airbus Fly?

Will New A350 Help Airbus Fly?

Reuters - Business Video Online (Dec. 22, 2014) Qatar Airways takes first delivery of Airbus' new A350 passenger jet. As Joel Flynn reports it's the planemaker's response to the Boeing 787 Dreamliner and the culmination of eight years of development. Video provided by Reuters
Powered by NewsLook.com
Man Parachutes Off Lawn Chair Airlifted By Helium Balloons

Man Parachutes Off Lawn Chair Airlifted By Helium Balloons

Buzz60 (Dec. 22, 2014) A BASE jumper rides a lawn chair, a shotgun, and a giant bunch of helium balloons into the sky in what seems like a country version of the movie 'Up." Jen Markham has the story. Video provided by Buzz60
Powered by NewsLook.com
Touch-Free Smart Phone Empowers Mobility-Impaired

Touch-Free Smart Phone Empowers Mobility-Impaired

Reuters - Innovations Video Online (Dec. 21, 2014) A touch-free phone developed in Israel enables the mobility-impaired to operate smart phones with just a movement of the head. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Existing Chemical Compounds Could Revive Failing Antibiotics, Says Danish Scientist

Existing Chemical Compounds Could Revive Failing Antibiotics, Says Danish Scientist

Reuters - Innovations Video Online (Dec. 21, 2014) A team of scientists led by Danish chemist Jorn Christensen says they have isolated two chemical compounds within an existing antipsychotic medication that could be used to help a range of failing antibiotics work against killer bacterial infections, such as Tuberculosis. Jim Drury went to meet him. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins