Featured Research

from universities, journals, and other organizations

Evidence Discovered Of New Subnuclear Particle

Date:
September 2, 1997
Source:
University Of Notre Dame
Summary:
Evidence of a new subnuclear particle -- an exotic meson -- has been discovered by a team of physicists from the University of Notre Dame and six other institutions. Long theorized, the particle had been undetected until now, said Neal Cason, professor of physics at Notre Dame and a cospokesman on the project.

Evidence of a new subnuclear particle -- an exotic meson -- has been discovered by a team of physicists from the University of Notre Dame and six other institutions. Long theorized, the particle had been undetected until now, said Neal Cason, professor of physics at Notre Dame and a cospokesman on the project.

The elementary particle physics group at Notre Dame -- professors Cason, William Shephard, John LoSecco and James Bishop -- and 47 others are investigators in this research, which has been published in the Sept. 1 issue of Physical Review Letters.

"Our observation of the exotic meson is significant to understanding the basic forces at work between the elementary particles," Cason said. "Comparing our results with current theoretical models will allow us to begin the detailed understanding of these forces."

The experiment, titled E852 and conducted at Brookhaven National Laboratory on Long Island, is reported in the dissertation of Notre Dame doctoral student David Thompson. Five other Notre Dame graduate students are among the 51 investigators in the research.

"This is a very important discovery," said Ted Barnes, a theoretical physicist at Oak Ridge National Laboratory and professor of physics at the University of Tennessee. "Theorists have predicted the existence of the exotic meson since the late 1970s, but E852 may have found the smoking gun for their existence. It's a benchmark that will set the mathematical scales for future experimentation and theoretical study."

A meson is a very unstable, medium-mass elementary particle with a short life span that is similar to but smaller than a proton or neutron. All three are composed of the most basic elementary particle, the quark. Protons and neutrons are made up of three quarks, while ordinary mesons are composed of one quark and one antiquark.

"Over the years, we've observed and catalogued mesons, with much of the work being done here at Notre Dame," said Cason. "What we've been searching for is a new form of a meson -- the exotic meson."

The building blocks of one type of exotic meson are a quark, an antiquark and gluon, yet another elementary particle that "glues" together the quark and antiquark.

Using high-energy particle beams at the Brookhaven accelerator, Cason said, "We discovered a meson that we know is not made up of a quark and antiquark, which means it must be an exotic meson. There are a number of different kinds of exotic mesons and we're now going to begin work to determine which kind this is."

Mesons and exotic mesons "are not a part of our everyday life," Cason said. "Because they are unstable, you cannot make higher forms of matter with them."

However, the discovery of the exotic meson is significant because it will allow physicists to expand their understanding of nature at its most fundamental level, Cason said.

"When we search for matter like this (the exotic meson), what we're really doing is looking for the fundamental forces between matter," Cason said. "As far as we know, there are only four fundamental forces in nature -- the gravitational, the electrical, the strong and the weak forces. This research will help us better understand the properties of the strong force."

The research began in 1989 and was funded by the High Energy Physics and Nuclear Physics Divisions of the National Science Foundation and the Department of Energy through Brookhaven.

Other institutions participating in the collaborative project are Brookhaven, the University of Massachusetts at Dartmouth, Northwestern University, Rensselaer Polytechnic Institute, and Moscow State University and the Institute for High Energy Physics in Russia.


Story Source:

The above story is based on materials provided by University Of Notre Dame. Note: Materials may be edited for content and length.


Cite This Page:

University Of Notre Dame. "Evidence Discovered Of New Subnuclear Particle." ScienceDaily. ScienceDaily, 2 September 1997. <www.sciencedaily.com/releases/1997/09/970902045006.htm>.
University Of Notre Dame. (1997, September 2). Evidence Discovered Of New Subnuclear Particle. ScienceDaily. Retrieved October 2, 2014 from www.sciencedaily.com/releases/1997/09/970902045006.htm
University Of Notre Dame. "Evidence Discovered Of New Subnuclear Particle." ScienceDaily. www.sciencedaily.com/releases/1997/09/970902045006.htm (accessed October 2, 2014).

Share This



More Matter & Energy News

Thursday, October 2, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Japan Looks To Faster Future As Bullet Train Turns 50

Japan Looks To Faster Future As Bullet Train Turns 50

Newsy (Oct. 1, 2014) Japan's bullet train turns 50 Wednesday. Here's a look at how it's changed over half a century — and the changes it's inspired globally. Video provided by Newsy
Powered by NewsLook.com
US Police Put Body Cameras to the Test

US Police Put Body Cameras to the Test

AFP (Oct. 1, 2014) Police body cameras are gradually being rolled out across the US, with interest surging after the fatal police shooting in August of an unarmed black teenager. Duration: 02:18 Video provided by AFP
Powered by NewsLook.com
Raw: Japan Celebrates 'bullet Train' Anniversary

Raw: Japan Celebrates 'bullet Train' Anniversary

AP (Oct. 1, 2014) A ceremony marking 50 years since Japan launched its Shinkansen bullet train was held on Wednesday in Tokyo. The latest model can travel from Tokyo to Osaka, a distance of 319 miles, in two hours and 25 minutes. (Oct. 1) Video provided by AP
Powered by NewsLook.com
Robotic Hair Restoration

Robotic Hair Restoration

Ivanhoe (Oct. 1, 2014) A new robotic procedure is changing the way we transplant hair. The ARTAS robot leaves no linear scarring and provides more natural results. Video provided by Ivanhoe
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins