Featured Research

from universities, journals, and other organizations

Jefferson Scientists Find Potential Deadly Effects Of Two Missing Cancer-Suppressor Genes

Date:
September 2, 1997
Source:
Thomas Jefferson University
Summary:
Cancer geneticists at the Kimmel Cancer Center of Thomas Jefferson University, Philadelphia, studying specially bred "knockout" mice, have found that two genes that normally protect against cancer may play a greater role than previously suspected in female development.

Cancer geneticists at the Kimmel Cancer Center of Thomas Jefferson University, Philadelphia, studying specially bred "knockout" mice, have found that two genes that normally protect against cancer may play a greater role than previously suspected in female development.

Related Articles


In the September issue of Nature Genetics, Richard Fishel, Ph.D., and postdoctoral fellows Aaron Cranston, Ph.D. and Tina Bocker, M.D., report that female mice that lack a pair of tumor-suppressor genes, p53 and MSH2, stop growing and die a little more than a week after conception.

Fishel, professor of microbiology and immunology at Jefferson Medical College, and co-discoverer of the human MSH2 colon cancer gene, thinks the answer lies with the X chromosome, one of two sex chromosomes responsible for sexual development. Somehow, he theorizes, the missing genes throw off normal cell proliferation and development. He believes that by getting a better handle on the mechanisms by which these genes actually can affect female development, scientists may better understand the genes' roles in both normal and abnormal cancer development, as well as lead to important new therapeutic strategies.

"The observation goes to the heart of how tumors develop and to tumor genetics," he points out. "It was previously found that this particular combination of altered genes is significantly lower in human tumors--our results may suggest why that is the case. These are two of the most commonly altered genes in colorectal cancer and understanding their mechanism in carcinogenesis is crucial to the development of therapeutic strategies."

When one cancer-protecting--so-called tumor suppressor--gene is missing, mice--and people--are much more likely than normal to develop cancer. When two such genes are absent or defective, the thinking goes, the likelihood of cancer development would be greater still.

P53 is the most common known genetic defect in human cancers. It may contribute to the development of several cancers, such as breast, colon, and lung, among others. Normally, p53 is a kind of genetic guardian. If genes become damaged, p53 shuts down everything until the damage can be fixed. MSH2 is a gene that helps cells' DNA spell-check and repair itself during replication. In 1993, Fishel and colleague Richard Kolodner showed that when MSH2 is altered, it accounts for about half of all cases of genetically linked hereditary non-polyposis colorectal cancer (HNPCC)--one of the most common human cancer predisposition syndromes (Fishel, R. et al., Cell, 74:1027, 1993).

Knockout mice lack a working gene or genes and are used as models to study the effects of cancer gene alterations, often helping scientists understand cancer mechanisms and develop effective therapies.

The researchers found that male knockout mice died from cancer at an average of 273 days, which is perhaps two to three times as quickly as they might die with only one missing gene. They expected that. But they didn't expect to find that the combination of missing genes was lethal to the female mouse embryos. By day 9.5 of gestation the female mice stopped developing and died.

"The embryo was undergoing global apoptosis, or programmed cell death," he said. "These embryos are self-destructing. As many as 60 to 90 percent of the cells underwent apoptosis."

Men have an X and a Y chromosome; women carry two Xs. During normal embryonic development, certain genes of one of the X chromosomes may be turned off, a process called X-inactivation. Normally, there is some damage to the X and other chromosomes when cells duplicate and go through a "cell cycle." Cells have an innate repair mechanism to fix the problem; both p53 and MSH2 are involved in regulating this cycle as well as controlling the genetic repair mechanism. Without these two genes, the result is "global, catastrophic cell death in developing females," according to Fishel.

One mystery that remains is the precise role of the two genes in preventing such mass cell death and allowing normal development. The p53 gene has been thought to have a critical role in apoptosis.

Fishel sees several possibilities. "The interesting observation is that they are undergoing global apoptosis independent of p53," he noted. "Many studies suggest that cells that decide to undergo apoptosis do it in a p53 dependent pathway. That presents two intriguing questions: what is this p53 independent pathway, and why are they [cells] dying? The only differences between males and females are the extra X or a Y chromosome. It might be that one of the X chromosomes is damaged [beyond repair] or the Y chromosome provides protection," he said.

"At the moment we favor the 'excessive X chromosome damage' argument since both MSH2 and p53 are involved in managing DNA repair."

Colleagues at both Jefferson and at the University of Toronto also contributed to the work.


Story Source:

The above story is based on materials provided by Thomas Jefferson University. Note: Materials may be edited for content and length.


Cite This Page:

Thomas Jefferson University. "Jefferson Scientists Find Potential Deadly Effects Of Two Missing Cancer-Suppressor Genes." ScienceDaily. ScienceDaily, 2 September 1997. <www.sciencedaily.com/releases/1997/09/970902050857.htm>.
Thomas Jefferson University. (1997, September 2). Jefferson Scientists Find Potential Deadly Effects Of Two Missing Cancer-Suppressor Genes. ScienceDaily. Retrieved February 28, 2015 from www.sciencedaily.com/releases/1997/09/970902050857.htm
Thomas Jefferson University. "Jefferson Scientists Find Potential Deadly Effects Of Two Missing Cancer-Suppressor Genes." ScienceDaily. www.sciencedaily.com/releases/1997/09/970902050857.htm (accessed February 28, 2015).

Share This


More From ScienceDaily



More Health & Medicine News

Saturday, February 28, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Could a $34 Smartphone Device Improve HIV Diagnosis in Africa?

Could a $34 Smartphone Device Improve HIV Diagnosis in Africa?

Reuters - Innovations Video Online (Feb. 27, 2015) A dongle that plugs into a Smartphone mimics a lab-based blood test for HIV and syphilis and can detect the diseases in 15 minutes, say researchers. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com
Doctor Says Head Transplants Possible Within Two Years

Doctor Says Head Transplants Possible Within Two Years

Buzz60 (Feb. 27, 2015) An Italian doctor is saying he could stick someone&apos;s head onto someone else&apos;s body. Patrick Jones (@Patrick_E_Jones) reports. Video provided by Buzz60
Powered by NewsLook.com
How Your Dentist Could Help Screen You For Diabetes

How Your Dentist Could Help Screen You For Diabetes

Newsy (Feb. 27, 2015) A new study from researchers at New York University suggests dentists could soon use blood samples taken from patients&apos; mouths to test for diabetes. Video provided by Newsy
Powered by NewsLook.com
The Best Tips to Makeover Your Health

The Best Tips to Makeover Your Health

Buzz60 (Feb. 27, 2015) If you&apos;re looking to boost your health this season, there are a few quick and easy steps to prompt you for success. Krystin Goodwin (@Krystingoodwin) has the best tips to give your health a makeover this spring! Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins